5 research outputs found

    Reviewing Magnetic Particle Preparation: Exploring the Viability in Biosensing

    Get PDF
    Kappe D, Bondzio L, Swager J, et al. Reviewing Magnetic Particle Preparation: Exploring the Viability in Biosensing. Sensors. 2020;20(16): 4596.In this review article, we conceptually investigated the requirements of magnetic nanoparticles for their application in biosensing and related them to example systems of our thin-film portfolio. Analyzing intrinsic magnetic properties of different magnetic phases, the size range of the magnetic particles was determined, which is of potential interest for biosensor technology. Different e-beam lithography strategies are utilized to identify possible ways to realize small magnetic particles targeting this size range. Three different particle systems from 500 μm to 50 nm are produced for this purpose, aiming at tunable, vertically magnetized synthetic antiferromagnets, martensitic transformation in a single elliptical, disc-shaped Heusler Ni50Mn32.5Ga17.5 particle and nanocylinders of Co2MnSi-Heusler compound. Perspectively, new applications for these particle systems in combination with microfluidics are addressed. Using the concept of a magnetic on–off ratchet, the most suitable particle system of these three materials is validated with respect to magnetically-driven transport in a microfluidic channel. In addition, options are also discussed for improving the magnetic ratchet for larger particles

    Entropy change reversibility in MnNi1−x Co x Ge0.97Al0.03 near the triple point

    No full text
    The nature of the phase transition has been studied in MnNi _1− _x Co _x Ge _0.97 Al _0.03 ( x = 0.20–0.50) through magnetization, differential scanning calorimetry and x-ray diffraction measurements; and the associated reversibility in the magnetocaloric effect has been examined. A small amount of Al substitution for Ge can lower the structural phase transition temperature, resulting in a coupled first-order magnetostructural transition (MST) from a ferromagnetic orthorhombic to a paramagnetic hexagonal phase in MnNi _1− _x Co _x Ge _0.97 Al _0.03 . Interestingly, a composition-dependent triple point (TP) has been detected in the studied system, where the first-order MST is split into an additional phase boundary at higher temperature with a second-order transition character. The critical-field-value of the field-induced MST decreases with increasing Co concentration and disappears at the TP ( x = 0.37) resembling most field-sensitive MST among the studied compositions. An increase of the hexagonal lattice parameter a _hex near the TP indicates a lattice softening associated with an enhancement of the vibrational amplitude in the Ni/Co site. The lattice softening leads to a larger field-induced structural entropy change (structural entropy change≫ magnetic entropy change, for this class of materials) with the application of a lower field, which results in a larger reversibility of the low-field entropy change (|Δ S _rev | = 6.9 J kg ^−1 K for Δ μ _0 H = 2 T) at the TP

    Electrospinning Poly(acrylonitrile) Containing Magnetite Nanoparticles: Influence of Magnetite Contents

    No full text
    Alvarez AKG, Dotter M, Tuvshinbayar K, et al. Electrospinning Poly(acrylonitrile) Containing Magnetite Nanoparticles: Influence of Magnetite Contents. Fibers . 2024;12(3): 19.Magnetic nanofibers were prepared by electrospinning polymer/metal solutions of poly(acrylonitrile) (PAN) with magnetite (Fe3O4) nanoparticles. At a mass ratio of PAN:magnetite of 2:1, the total solid content in the dimethyl sulfoxide (DMSO) solution was varied between 15 wt.% and 25 wt.%, which represents the limits of the spinnable range. The results show that the most homogeneous nanofiber mats were 21 wt.% solid contents. At 15 wt.% solid contents, a nano-membrane with some fibrous regions was produced. Nanofibers at 25 wt.% had a much larger and more inhomogeneous diameter. Nevertheless, the magnetic properties of all samples were very similar, indicating that the distribution of magnetite nanoparticles in the fibers is comparable in all samples. The results also suggested that the samples spun from solutions with near-ideal solid contents (19-21 wt.%) contain agglomerations of the nanoparticles inside the nanofibers

    Hard carbon microspheres with bimodal size distribution and hierarchical porosity via hydrothermal carbonization of trehalose

    No full text
    Wortmann M, Keil W, Diestelhorst E, et al. Hard carbon microspheres with bimodal size distribution and hierarchical porosity via hydrothermal carbonization of trehalose. RSC Advances . 2023;13(21):14181-14189.Hydrothermal carbonization (HTC) is an efficient thermochemical method for the conversion of organic feedstock to carbonaceous solids. HTC of different saccharides is known to produce microspheres (MS) with mostly Gaussian size distribution, which are utilized as functional materials in various applications, both as pristine MS and as a precursor for hard carbon MS. Although the average size of the MS can be influenced by adjusting the process parameters, there is no reliable mechanism to affect their size distribution. Our results demonstrate that HTC of trehalose, in contrast to other saccharides, results in a distinctly bimodal sphere diameter distribution consisting of small spheres with diameters of (2.1 ± 0.2) mum and of large spheres with diameters of (10.4 ± 2.6) mum. Remarkably, after pyrolytic post-carbonization at 1000 °C the MS develop a multimodal pore size distribution with abundant macropores > 100 nm, mesopores > 10 nm and micropores < 2 nm, which were examined by small-angle X-ray scattering and visualized by charge-compensated helium ion microscopy. The bimodal size distribution and hierarchical porosity provide an extraordinary set of properties and potential variables for the tailored synthesis of hierarchical porous carbons, making trehalose-derived hard carbon MS a highly promising material for applications in catalysis, filtration, and energy storage devices. This journal is © The Royal Society of Chemistry
    corecore