1,242 research outputs found
Evidence for Asymptotic Safety from Lattice Quantum Gravity
We calculate the spectral dimension for nonperturbative quantum gravity
defined via Euclidean dynamical triangulations. We find that it runs from a
value of ~3/2 at short distance to ~4 at large distance scales, similar to
results from causal dynamical triangulations. We argue that the short distance
value of 3/2 for the spectral dimension may resolve the tension between
asymptotic safety and the holographic principle.Comment: 4 pages, 2 figures. Minor typos corrected, clarifications and
reference added. Conforms with version published in PR
B -> D* l nu and B -> D l nu form factors in staggered chiral perturbation theory
We calculate the B -> D and B -> D* form factors at zero recoil in Staggered
Chiral Perturbation Theory. We consider heavy-light mesons in which only the
light (u, d, or s) quark is staggered; current lattice simulations generally
use a highly improved action such as the Fermilab or NRQCD action for the heavy
(b or c) quark. We work to lowest nontrivial order in the heavy quark expansion
and to one-loop in the chiral expansion. We present results for a partially
quenched theory with three sea quarks in which there are no mass degeneracies
(the "1+1+1" theory) and for a partially quenched theory in which the u and d
sea quark masses are equal (the "2+1" theory). We also present results for full
(2+1) QCD, along with a numerical estimate of the size of staggered
discretization errors. Finally, we calculate the finite volume corrections to
the form factors and estimate their numerical size in current lattice
simulations.Comment: 19 pages, 6 figures, references added, expanded discussion in Section
I
K to pi and K to 0 in 2+1 Flavor Partially Quenched Chiral Perturbation Theory
We calculate results for K to pi and K to 0 matrix elements to
next-to-leading order in 2+1 flavor partially quenched chiral perturbation
theory. Results are presented for both the Delta I=1/2 and 3/2 channels, for
chiral operators corresponding to current-current, gluonic penguin, and
electroweak penguin 4-quark operators. These formulas are useful for studying
the chiral behavior of currently available 2+1 flavor lattice QCD results, from
which the low energy constants of the chiral effective theory can be
determined. The low energy constants of these matrix elements are necessary for
an understanding of the Delta I=1/2 rule, and for calculations of
epsilon'/epsilon using current lattice QCD simulations.Comment: 43 pages, 2 figures, uses RevTeX, added and updated reference
Recent results in Euclidean dynamical triangulations
We study a formulation of lattice gravity defined via Euclidean dynamical
triangulations (EDT). After fine-tuning a non-trivial local measure term we
find evidence that four-dimensional, semi-classical geometries are recovered at
long distance scales in the continuum limit. Furthermore, we find that the
spectral dimension at short distance scales is consistent with 3/2, a value
that is also observed in the causal dynamical triangulation (CDT) approach to
quantum gravity.Comment: 7 pages, 3 figures. Proceedings for the 3rd conference of the Polish
society on relativit
Lattice Quantum Gravity and Asymptotic Safety
We study the nonperturbative formulation of quantum gravity defined via
Euclidean dynamical triangulations (EDT) in an attempt to make contact with
Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary
in order to recover semiclassical behavior. Such a fine-tuning is generally
associated with the breaking of a target symmetry by the lattice regulator; in
this case we argue that the target symmetry is the general coordinate
invariance of the theory. After introducing and fine-tuning a nontrivial local
measure term, we find no barrier to taking a continuum limit, and we find
evidence that four-dimensional, semiclassical geometries are recovered at long
distance scales in the continuum limit. We also find that the spectral
dimension at short distance scales is consistent with 3/2, a value that could
resolve the tension between asymptotic safety and the holographic entropy
scaling of black holes. We argue that the number of relevant couplings in the
continuum theory is one, once symmetry breaking by the lattice regulator is
accounted for. Such a theory is maximally predictive, with no adjustable
parameters. The cosmological constant in Planck units is the only relevant
parameter, which serves to set the lattice scale. The cosmological constant in
Planck units is of order 1 in the ultraviolet and undergoes renormalization
group running to small values in the infrared. If these findings hold up under
further scrutiny, the lattice may provide a nonperturbative definition of a
renormalizable quantum field theory of general relativity with no adjustable
parameters and a cosmological constant that is naturally small in the infrared.Comment: 69 pages, 25 figures. Revised discussion of target symmetry
throughout paper. Numerical results unchanged and main conclusions largely
unchanged. Added references and corrected typos. Conforms with version
published in Phys. Rev.
Staggered Chiral Perturbation Theory for Heavy-Light Mesons
We incorporate heavy-light mesons into staggered chiral perturbation theory,
working to leading order in 1/m_Q, where m_Q is the heavy quark mass. At first
non-trivial order in the chiral expansion, staggered taste violations affect
the chiral logarithms for heavy-light quantities only through the light meson
propagators in loops. There are also new analytic contributions coming from
additional terms in the Lagrangian involving heavy-light and light mesons.
Using this heavy-light staggered chiral perturbation theory, we perform the
one-loop calculation of the B (or D) meson leptonic decay constant in the
partially quenched and full QCD cases. In our treatment, we assume the validity
both of the "fourth root trick" to reduce four staggered tastes to one, and of
the prescription to represent this trick in the chiral theory by insertions of
factors of 1/4 for each sea quark loop.Comment: 48 pages, 6 figures. v3: Some clarifying comments/caveats added;
typos fixed. Corresponds to published versio
Counteranion-controlled properties of polyelectrolyte multilayers
Polyelectrolyte multilayers consisting of poly(diallyldimethylammonium chloride) (PDADMA) and poly(sodium 4-styrenesulfonate) (PSS) were studied on a quartz crystal microbalance (QCM) utilizing a novel method to determine the elastic properties of the films. Since the multilayer was found to consist of a hard core and soft outer layer, as can be realized on the basis of the multilayer zone model, the multilayer films were made thick enough to reveal the elastic properties of the bulk material of the film. Several hundreds of layers were deposited using a fully automated multilayer deposition machine. We found out that, in addition to the increase in the bilayer mass, a remarkable increase of stiffness of the polyelectrolyte multilayer was observed while changing the counteranion used in the deposition process. The increase of stiffness was found to be comparable to the glass transition of common polymers. The increase is attributed to the counteranions that take part in polyelectrolyte charge compensation. The correlation of storage shear modulus and mass density to the hydration entropy of the anion could be clearly observed
Modally Resolved Fabry-Perot Experiment with Semiconductor Waveguides
Based on the interaction between different spatial modes, semiconductor
Bragg-reflection waveguides provide a highly functional platform for non-linear
optics. Therefore, the control and engineering of the properties of each
spatial mode is essential. Despite the multimodeness of our waveguide, the
well-established Fabry-Perot technique for recording fringes in the optical
transmission spectrum can successfully be employed for a detailed linear
optical characterization when combined with Fourier analysis. A prerequisite
for the modal sensitivity is a finely resolved transmission spectrum that is
recorded over a broad frequency band. Our results highlight how the features of
different spatial modes, such as their loss characteristics and dispersion
properties, can be separated from each other allowing their comparison. The
mode-resolved measurements are important for optimizing the performance of such
multimode waveguides by tailoring the properties of their spatial modes.Comment: 8 pages, 7 figure
Staggered Chiral Perturbation Theory and the Fourth-Root Trick
Staggered chiral perturbation theory (schpt) takes into account the
"fourth-root trick" for reducing unwanted (taste) degrees of freedom with
staggered quarks by multiplying the contribution of each sea quark loop by a
factor of 1/4. In the special case of four staggered fields (four flavors,
nF=4), I show here that certain assumptions about analyticity and phase
structure imply the validity of this procedure for representing the rooting
trick in the chiral sector. I start from the observation that, when the four
flavors are degenerate, the fourth root simply reduces nF=4 to nF=1. One can
then treat nondegenerate quark masses by expanding around the degenerate limit.
With additional assumptions on decoupling, the result can be extended to the
more interesting cases of nF=3, 2, or 1. A apparent paradox associated with the
one-flavor case is resolved. Coupled with some expected features of unrooted
staggered quarks in the continuum limit, in particular the restoration of taste
symmetry, schpt then implies that the fourth-root trick induces no problems
(for example, a violation of unitarity that persists in the continuum limit) in
the lowest energy sector of staggered lattice QCD. It also says that the theory
with staggered valence quarks and rooted staggered sea quarks behaves like a
simple, partially-quenched theory, not like a "mixed" theory in which sea and
valence quarks have different lattice actions. In most cases, the assumptions
made in this paper are not only sufficient but also necessary for the validity
of schpt, so that a variety of possible new routes for testing this validity
are opened.Comment: 39 pages, 3 figures. v3: minor changes: improved explanations and
less tentative discussion in several places; corresponds to published versio
- …