22 research outputs found

    Zoonotic abbreviata caucasica in wild chimpanzees (Pan troglodytes verus) from Senegal

    Get PDF
    Abbreviata caucasica (syn. Physaloptera mordens) has been reported in human and various non-human primates including great apes. The identification of this nematode is seldom performed and relies on egg characterization at the coproscopy, in the absence of any molecular tool. Following the recovery of two adult females of A. caucasica from the feces of wild Senegalese chimpanzees, morphometric characteristics were reported and new data on the width of the esophagus (0.268– 0.287 mm) and on the cuticle structure (0.70–0.122 mm) were provided. The molecular characterization of a set of mitochondrial (cox1, 16S rRNA, 12S rRNA) and nuclear (18S rRNA and ITS2) partial genes was performed. Our phylogenetic analysis indicates for the first time that A. caucasica is monophyletic with Physaloptera species. A novel molecular tool was developed for the routine diagnosis of A. caucasica and the surveillance of Nematoda infestations. An A. caucasica-specific qPCR targeting the 12S gene was assessed. The assay was able to detect up to 1.13 × 10−3 eggs/g of fecal matter irrespective of its consistency, with an efficiency of 101.8% and a perfect adjustment (R2 = 0.99). The infection rate by A. caucasica in the chimpanzee fecal samples was 52.08%. Only 6.19% of the environmental samples were positive for nematode DNA and any for A. caucasica. Our findings indicate the need for further studies to clarify the epidemiology, circulation, life cycle, and possible pathological effects of this infestation using the molecular tool herein developed

    Detection of Endosymbiont Candidatus Midichloria mitochondrii and Tickborne Pathogens in Humans Exposed to Tick Bites, Italy

    Get PDF
    : During 2021, we collected blood and serum samples from 135 persons exposed to tick bites in southern Italy. We serologically and molecularly screened for zoonotic tickborne pathogens and only molecularly screened for Candidatus Midichloria mitochondrii. Overall, 62 (45.9%) persons tested positive for tickborne pathogens. Coxiella burnetii was detected most frequently (27.4%), along with Rickettsia spp. (21.5%) and Borrelia spp. (10.4%). We detected Candidatus M. mitochondrii DNA in 46 (34.1%) participants who had statistically significant associations to tickborne pathogens (p<0.0001). Phylogenetic analysis of Candidatus M. mitochondrii sequences revealed 5 clades and 8 human sequence types that correlated with vertebrates, Ixodes spp. ticks, and countries in Europe. These data demonstrated a high circulation of tickborne pathogens and Candidatus M. mitochondrii DNA in persons participating in outdoor activities in southern Italy. Our study shows how coordinated surveillance among patients, clinicians, and veterinarians could inform a One Health approach for monitoring and controlling the circulation of tickborne pathogens

    A cardiac and subcutaneous canine dirofilariosis outbreak in a kennel in central France

    No full text
    Canine dirofilarioses are nematode infections caused by two species of the genus Dirofilaria: D. immitis and D. repens. We describe here an outbreak of D. immitis and D. repens infection in military working dogs (MWDs) housed in a kennel in the Indre department (centre of France). Out of a total of 17 dogs, 6 (35.2%) tested positive for D. immitis, D. repens or both parasites. Infested dogs were treated and prophylactic measures were implemented for the entire kennel staff. To our knowledge, this is the first documented description of an outbreak of canine cardiopulmonary dirofilariasis in the center of France, unlike in the south of this country, where D. immitis and D. repens dirofilariasis are enzootic. In France, as mosquito vectors expand their territory and new non-native vectors are introduced, it is likely that the distribution area of these two diseases of domestic and wild carnivores will be wider and underestimated

    Molecular investigation of vector-borne pathogens in red foxes (vulpes vulpes) from southern France

    No full text
    Because of their free-ranging nature, the probability of wild animals being exposed to vector-borne pathogens is likely higher than that of humans and pets. Recently, the red fox (Vulpes vulpes) has been suspected as being a reservoir or host of several pathogens of veterinary and public health importance. We conducted a molecular survey on 93 red foxes hunted in 2008-18, in the departments of Bouches-du-Rhone and Var, in southeastern France, for pathogens including Leishmania infantum, Piroplasmida, Hepatozoon spp., nematodes, Coxiella burnetii, Borrelia spp., Rickettsia spp., and Anaplasmataceae. Spleen samples were screened for the presence of vector-borne pathogens by PCR followed by sequencing. Pathogens were detected in 94% (87/93) of red foxes, and coinfections were identified in 24% (22/93) of foxes. We identified DNA from Hepatozoon canis, L. infantum, and Babesia vogeli in 92% (86/93), 15% (14/93), and 3% (3/93) of red foxes, respectively. We also found DNA of nematodes in 3% (3/93) of foxes; Spirocerca vulpis was identified in one fox and Dirofilaria immitis in the two others. Interestingly, C. burnetii genotype 3, previously described in humans from the same region, was identified in 3% (3/93) of foxes and Anaplasma platys in 2% (2/93) of foxes. We did not detect DNA of Borrelia spp., Bartonella spp., or Rickettsia spp. In our study, the prevalence of pathogens did not vary by fox origin, sex, or tick carriage. Molecular evidence of B. vogeli, H. canis, S. vulpis, D. immitis, C. burnetii, and A. platys in red foxes has not previously, to our knowledge, been reported from southern France. We propose that red foxes are potential reservoirs for several pathogens, including major zoonotic agents such as L. infantum. They could be incidental hosts for pathogens, such C. burnetii. The high prevalence for H. canis suggests an important role of foxes in domestic dog (Canis lupus familiaris) infection. These animals may pose a threat to human and animal health

    Detection of canine vector-borne filariasis and their Wolbachia endosymbionts in French Guiana

    No full text
    In French Guiana, canine heartworm disease is well known, but the diversity of filarial parasites of dogs remains largely unknown. A total of 98 canine blood samples from Cayenne and Kourou were assessed by a blood wet mount preparation, heartworm antigen test and molecular exploration of filarioid and Wolbachia DNAs, followed by a multiplex species-specific qPCR's identification and a subsequent sequencing analysis. Thereafter, a phylogeny based on maximum likelihood was carried out to facilitate specific identification. Five dogs were microfilaremic. Heartworm antigens were detected in 15 (15.3%) dogs. Of these, six (6.1%) were considered as occult infections as neither microfilariae nor Dirofilaria immitis DNA were detected. The 11 (11.2%) D. immitis isolates corresponded to a low virulent strain. Six of the D. immitis isolates were positive for Wolbachia endosymbionts of D. immitis belonging to the clade C DNA. Acanthocheilonema reconditum DNA was detected in 3 (3.1%) samples. Of these latter, one was found co-infected with the Brugia sp. genotype and the DNA of the clade D of the Wolbachia endosymbiont of Brugia species. This latter was also detected in two filarioid DNA-free samples. Finally, two samples were positive for Cercopithifilaria bainae genotype, which is distinct from those identified in Europe. The present study highlights the urgent need to implement chemoprophylaxis associated with anti-Wolbachia drugs to control these potential zoonoses

    Effect of dinotefuran, permethrin, and pyriproxyfen (Vectra (R) 3D) on the foraging and blood-feeding behaviors of Aedes albopictus using laboratory rodent model

    No full text
    Dinotefuran-Permethrin-Pyriproxyfen (DPP) is used to kill and repel mosquitoes from dogs. However, the influence of the product on the host-seeking behavior of mosquitoes remains unknown. The interference of DPP with the host selection of unfed female Aedes albopictus was investigated. A total of 18 animals (9 mice and 9 rats) were divided into three groups of six animals each. DU: DPP treated rats (n = 3) with untreated mice (n = 3), UD: DPP treated mice (n = 3) with untreated rats (n = 3) and control UU: untreated mice (n = 3) and untreated rats (n = 3). In each group, the rats and mice were placed 30 cm apart. After sedation, the animals in each group were exposed twice (Day 1 and Day 7 post-treatment) for one hour to 71 +/- 3 female mosquitoes. Mosquitoes were categorized after the 2-h post-exposure period as dead or alive. Blood-meal origin was determined from mosquitoes using a newly customized duplex qPCR. The highest values of forage ratio (1.36 >= wi >= 1.88) and selection index (0.63 >= Bi >= 0.94) for rat hosts indicates a preference of mosquitoes for this species as compared to mice when co-housed during the exposure. The mosquitoes only seldom fed on mice, even in the untreated group. The anti-feeding effect of DPP was therefore only assessed on rat's hosts. The results showed that DPP, when directly applied on rats, provided a direct protection of 82% and 61% on Day 1 and Day 7, respectively, while when applied on mice hosts (UD), the DPP provided an indirect protection of 21% and 10% on Day 1 and Day 7, respectively. The results showed also that DPP, when applied on rats, provided a direct protection against Ae. albopictus bites. This effect did not result in increased exposure of the untreated host placed in the same cage at a distance of 30 cm

    Molecular and serological detection of animal and human vector-borne pathogens in the blood of dogs from Cote d'Ivoire

    No full text
    In Cote d'Ivoire, limited information are available on vector-borne pathogens, their prevalence and distribution. Here, we assess the occurrence and diversity of canine vector-borne diseases (CVBDs) in Abidjan and Yamoussoukro cities. Blood from a total of 123 dogs were tested for Leishmania infantum and Ehrlichia canis antibodies and screened for Leishmania and Trypanosoma spp., Piroplasmida, Filariidae and Anaplasmataceae by PCR and sequencing. Among dogs, 39 % were positive for at least one pathogen. Seroprevalences were: 15.4 % and 12.2 % for L. infantum and E. canis, respectively. DNA of L. infantum and T. congolense (4.1 %), Baabesia vogeli (1.6 %), Filariidae (Dirofilaria immitis, D. repens and Acanthocheilonema reconditum) (10.6 %) has been detected. Anaplasmataceae were detected in (17.1 %) and E. canis was the only identified specie. Co-infections were observed in 13.8 % of dogs: E. canis-L. infantum co-infection was the most prevalent (4.9 %). Age, breed and sex of dogs do not seem to influence infections. Village dogs were more susceptible to CVBDs than kennel dogs (PV = 0.0000008). This study reports for the first time the presence of L. infantum, B. vogeli, A. reconditum, D. immitis and D. repens in dogs from Cote d'Ivoire and determines the prevalence and diversity of CVBD pathogens. The results indicate that human and animal pathogens are abundant in Ivoirian dogs which requires attention of veterinarians, physicians and authorities against these diseases, especially against major zoonosis such as visceral leishmaniasis (L. infantum)
    corecore