2,437 research outputs found

    Elastic metamaterials with simultaneously negative effective shear modulus and mass density

    Full text link
    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess negative shear modulus and negative mass density over a large frequency region. Such a solid metamaterial has a unique elastic property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample, and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids

    Controlling magnetization reversal in Co/Pt nanostructures with perpendicular anisotropy

    Full text link
    We demonstrate a simple method to tailor the magnetization reversal mechanisms of Co/Pt multilayers by depositing them onto large area nanoporous anodized alumina (AAO) with various aspect ratios, A = pore depth/diameter. Magnetization reversal of composite (Co/Pt)/AAO films with large A is governed by strong domain-wall pinning which gradually transforms into a rotation-dominated reversal for samples with smaller A, as investigated by a first-order reversal curve method in conjunction with analysis of the angular dependent switching fields. The change of the magnetization reversal mode is attributed to topographical changes induced by the aspect ratio of the AAO templates.Comment: 12 pages, 3 figure

    trans-Diaqua­bis[5-carb­oxy-4-carboxyl­ato-2-(4-pyridinio)-1H-imidazol-1-ido-κ2 N 3,O 4]iron(II)

    Get PDF
    In the title complex, [Fe(C10H6N3O4)2(H2O)2], the FeII atom is located on a twofold rotation axis and is coordinated by two trans-positioned N,O-bidentate and zwitterionic 5-carboxy-2-(pyridinium-4-yl)-1H-imidazol-1-ide-4-carboxylate H2PIDC− ligands and two water mol­ecules in a distorted environment. In the crystal packing, a three-dimensional network is constructed via hydrogen-bonding involving the water mol­ecules, uncoordinated imidazole N atom, protonated pyridine N and carboxyl­ate O atoms

    trans-Diaqua­bis[5-carb­oxy-2-(3-pyrid­yl)-1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4]iron(II)

    Get PDF
    In the title complex, [Fe(C10H6N3O4)2(H2O)2], the FeII atom is located on an inversion centre and is trans-coordinated by two N,O-bidentate 5-carb­oxy-2-(3-pyrid­yl)-1H-imidazole-4-carb­oxy­l­ate ligands and two water mol­ecules, defining a distorted octa­hedral environment. A two-dimensional network of N—H⋯O and O—H⋯O hydrogen bonds extending parallel to (110) helps to stabilize the crystal packing

    trans-Diaqua­bis­[5-carb­oxy-4-carboxyl­ato-2-(4-pyridinio)-1H-imidazol-1-ido-κ2 N 3,O 4]zinc(II)

    Get PDF
    In the title complex, [Zn(C10H6N3O4)2(H2O)2], the ZnII atom is located on a twofold rotation axis and is coordinated by two trans-positioned N,O-bidentate and zwitterionic 5-carb­oxy-4-carboxyl­ato-2-(4-pyridinio)-1H-imidazol-1-ide (H2PIDC−) ligands and two water mol­ecules, defining a distorted octa­hedral environment. The complete solid-state structure can be described as a three-dimensional supra­molecular framework, stabilized by extensive hydrogen-bonding inter­actions involving the coordinated water mol­ecules, uncoordin­ated imidazole N atom, protonated pyridine N and carboxyl­ate O atoms of the H2PIDC− ligands
    corecore