4,791 research outputs found

    Health‐related quality of life in survivors of advanced melanoma treated with anti‐PD1‐based immune checkpoint inhibitors

    Full text link
    Background: Immune checkpoint inhibitors (ICIs) have significantly improved survival in advanced melanoma but are associated with immune-related adverse events (irAEs). This single center, cross-sectional survey aimed to describe the long-term symptom burden and impact on health-related quality of life (HRQL) of advanced melanoma patients with sustained disease control following treatment with ICIs. Methods: Advanced melanoma patients (stage IIB, III or IV, AJCCv8), treated with anti-PD1-based ICIs, who were off-treatment and had at least 6 months follow-up from their last infusion with an ongoing response in the metastatic setting or no evidence of disease recurrence in the adjuvant setting. A paper-based questionnaire, consisting of the EORTC QLQ-C30, EORTC QLQ-FA12, and the PRO-CTCAE was administered. Results: Of 90 participants, 61 (68%) completed the questionnaire; 40 received single-agent anti-PD1, and 21 anti-PD1/anti-CTLA4. Thirty-three (54%) were treated in the adjuvant setting. At the time of enrolment, 31 (51%) participants had active treatment for a previous irAE. Overall, 18/61 (30%) participants reported long-term symptoms and trouble in physical and emotional functioning. Physical fatigue was common and interfered with daily activities (n = 12, 20%). In the PRO-CTCAE questionnaire, muscle ache (n = 12, 20%) and joint ache (n = 9, 15%) were commonly reported. Despite this, participants reported overall good health (6.00, range 2.00-7.00) and reasonable level of HRQL (6.00, range 3.00-7.00). Discussion: Melanoma survivors experience long-term symptoms in physical and psychosocial HRQL domains after ICI treatment. These results underline the importance to address existing gaps in survivorship care, implement these findings in clinical practice and increase awareness for long-term symptoms in these patients

    Illusions and Cloaks for Surface Waves

    Get PDF
    Open access articleEver since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.Engineering and Physical Sciences Research Council (EPSRC

    JCMT POL-2 and BISTRO Survey Observations of Magnetic Fields in the L1689 Molecular Cloud

    Get PDF
    We present 850 μm polarization observations of the L1689 molecular cloud, part of the nearby Ophiuchus molecular cloud complex, taken with the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT). We observe three regions of L1689: the clump L1689N which houses the IRAS 16293-2433 protostellar system, the starless clump SMM-16, and the starless core L1689B. We use the Davis–Chandrasekhar–Fermi method to estimate plane-of-sky field strengths of 366 ± 55 μG in L1689N, 284 ± 34 μG in SMM-16, and 72 ± 33 μG in L1689B, for our fiducial value of dust opacity. These values indicate that all three regions are likely to be magnetically transcritical with sub-Alfvénic turbulence. In all three regions, the inferred mean magnetic field direction is approximately perpendicular to the local filament direction identified in Herschel Space Telescope observations. The core-scale field morphologies for L1689N and L1689B are consistent with the cloud-scale field morphology measured by the Planck Space Observatory, suggesting that material can flow freely from large to small scales for these sources. Based on these magnetic field measurements, we posit that accretion from the cloud onto L1689N and L1689B may be magnetically regulated. However, in SMM-16, the clump-scale field is nearly perpendicular to the field seen on cloud scales by Planck, suggesting that it may be unable to efficiently accrete further material from its surroundings

    Nanoscale Electronic Inhomogeneity in In2Se3 Nanoribbons Revealed by Microwave Impedance Microscopy

    Full text link
    Driven by interactions due to the charge, spin, orbital, and lattice degrees of freedom, nanoscale inhomogeneity has emerged as a new theme for materials with novel properties near multiphase boundaries. As vividly demonstrated in complex metal oxides and chalcogenides, these microscopic phases are of great scientific and technological importance for research in high-temperature superconductors, colossal magnetoresistance effect, phase-change memories, and domain switching operations. Direct imaging on dielectric properties of these local phases, however, presents a big challenge for existing scanning probe techniques. Here, we report the observation of electronic inhomogeneity in indium selenide (In2Se3) nanoribbons by near-field scanning microwave impedance microscopy. Multiple phases with local resistivity spanning six orders of magnitude are identified as the coexistence of superlattice, simple hexagonal lattice and amorphous structures with 100nm inhomogeneous length scale, consistent with high-resolution transmission electron microscope studies. The atomic-force-microscope-compatible microwave probe is able to perform quantitative sub-surface electronic study in a noninvasive manner. Finally, the phase change memory function in In2Se3 nanoribbon devices can be locally recorded with big signal of opposite signs.Comment: 11 pages, 4 figure

    The JCMT BISTRO-2 Survey: The Magnetic Field in the Center of the Rosette Molecular Cloud

    Get PDF
    We present the first 850 μm polarization observations in the most active star-forming site of the Rosette Molecular Cloud (d ~ 1.6 kpc) in the wall of the Rosette Nebula, imaged with the SCUBA-2/POL-2 instruments of the James Clerk Maxwell telescope, as part of the B-Fields In Star-forming Region Observations 2 (BISTRO-2) survey. From the POL-2 data we find that the polarization fraction decreases with the 850 μm continuum intensity with α = 0.49 ± 0.08 in the p ∝ I−α relation, which suggests that some fraction of the dust grains remain aligned at high densities. The north of our 850 μm image reveals a "gemstone ring" morphology, which is a ~1 pc diameter ring-like structure with extended emission in the "head" to the southwest. We hypothesize that it might have been blown by feedback in its interior, while the B-field is parallel to its circumference in most places. In the south of our SCUBA-2 field the clumps are apparently connected with filaments that follow infrared dark clouds. Here, the POL-2 magnetic field orientations appear bimodal with respect to the large-scale Planck field. The mass of our effective mapped area is ~174 M⊙, which we calculate from 850 μm flux densities. We compare our results with masses from large-scale emission-subtracted Herschel 250 μm data and find agreement within 30%. We estimate the plane-of-sky B-field strength in one typical subregion using the Davis–Chandrasekhar–Fermi technique and find 80 ± 30 μG toward a clump and its outskirts. The estimated mass-to-flux ratio of λ = 2.3 ± 1.0 suggests that the B-field is not sufficiently strong to prevent gravitational collapse in this subregion

    Localisation of RNAs into the germ plasm of vitellogenic xenopus oocytes

    Get PDF
    We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2), we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP) particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the “late”, Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others

    The JCMT BISTRO Survey: The Distribution of Magnetic Field Strengths toward the OMC-1 Region

    Get PDF
    Measurement of magnetic field strengths in a molecular cloud is essential for determining the criticality of magnetic support against gravitational collapse. In this paper, as part of the JCMT BISTRO survey, we suggest a new application of the Davis–Chandrasekhar–Fermi (DCF) method to estimate the distribution of magnetic field strengths in the OMC-1 region. We use observations of dust polarization emission at 450 and 850 μm, and C18O (3–2) spectral line data obtained with the JCMT. We estimate the volume density, the velocity dispersion, and the polarization angle dispersion in a box, 40'' × 40'' (5×5 pixels), which moves over the OMC-1 region. By substituting three quantities in each box with the DCF method, we get magnetic field strengths over the OMC-1 region. We note that there are very large uncertainties in the inferred field strengths, as discussed in detail in this paper. The field strengths vary from 0.8 to 26.4 mG, and their mean value is about 6 mG. Additionally, we obtain maps of the mass-to-flux ratio in units of a critical value and the Alfvén Mach number. The central parts of the BN–KL and South (S) clumps in the OMC-1 region are magnetically supercritical, so the magnetic field cannot support the clumps against gravitational collapse. However, the outer parts of the region are magnetically subcritical. The mean Alfvén Mach number is about 0.4 over the region, which implies that the magnetic pressure exceeds the turbulent pressure in the OMC-1 region
    corecore