31,180 research outputs found
molecular ions can exist in strong magnetic fields
Using the variational method it is shown that for magnetic fields G there can exist a molecular ion .Comment: LaTeX, 7 pp, 1 table, 4 figures. Title modified. Consideration of the
longitudinal size of the system was adde
How strong are the Rossby vortices?
The Rossby wave instability, associated with density bumps in differentially
rotating discs, may arise in several different astrophysical contexts, such as
galactic or protoplanetary discs. While the linear phase of the instability has
been well studied, the nonlinear evolution and especially the saturation phase
remain poorly understood. In this paper, we test the non-linear saturation
mechanism analogous to that derived for wave-particle interaction in plasma
physics. To this end we perform global numerical simulations of the evolution
of the instability in a two-dimensional disc. We confirm the physical mechanism
for the instability saturation and show that the maximum amplitude of vorticity
can be estimated as twice the linear growth rate of the instability. We provide
an empirical fitting formula for this growth rate for various parameters of the
density bump. We also investigate the effects of the azimuthal mode number of
the instability and the energy leakage in the spiral density waves. Finally, we
show that our results can be extrapolated to 3D discs.Comment: Accepted for publication in MNRA
Irrotational Binary Neutron Stars in Quasiequilibrium in General Relativity
Neutron stars in binary orbit emit gravitational waves and spiral slowly
together. During this inspiral, they are expected to have very little
vorticity. It is in fact a good approximation to treat the system as having
zero vorticity, i.e., as irrotational. Because the orbital period is much
shorter than the radiation reaction time scale, it is also an excellent
approximation to treat the system as evolving through a sequence of equilibrium
states, in each of which the gravitational radiation is neglected. In Newtonian
gravity, one can simplify the hydrodynamic equations considerably for an
equilibrium irrotational binary by introducing a velocity potential. The
equations reduce to a Poisson-like equation for the potential, and a
Bernoulli-type integral for the density. We show that a similar simplification
can be carried out in general relativity. The resulting equations are much
easier to solve than other formulations of the problem.Comment: 14 pages, AASTeX, accepted in ApJ. Simplified final form of equation
(eq. 52). Added Shibata re
In situ scanning electrochemical probe microscopy for energy applications
High resolution electrochemical imaging methods provide opportunities to study localized phenomena on electrode surfaces. Here, we review recent advances in scanning electrochemical microscopy (SECM) to study materials involved in (electrocatalytic) energy-related applications. In particular, we discuss SECM as a powerful screening technique and also advances in novel techniques based on micro- and nanopipets, such as the scanning micropipet contact method and scanning electrochemical cell microscopy and their use in energy-related research
Self-consistent nonlinear kinetic simulations of the anomalous Doppler instability of suprathermal electrons in plasmas
Suprathermal tails in the distributions of electron velocities parallel to the magnetic field are found in many areas of plasma physics, from magnetic confinement fusion to solar system plasmas. Parallel electron kinetic energy can be transferred into plasma waves and perpendicular gyration energy of particles through the anomalous Doppler instability (ADI), provided that energetic electrons with parallel velocities v ≥ (ω + Ωce )/k are present; here Ωce denotes electron cyclotron frequency, ω the wave angular frequency and k the component of wavenumber parallel to the magnetic field. This phenomenon is widely observed in tokamak plasmas. Here we present the first fully self-consistent relativistic particle-in-cell simulations of the ADI, spanning the linear and nonlinear regimes of the ADI. We test the robustness of the analytical theory in the linear regime and follow the ADI through to the steady state. By directly evaluating the parallel and perpendicular dynamical contributions to j · E in the simulations, we follow the energy transfer between
the excited waves and the bulk and tail electron populations for the first time. We find that the ratio Ωce /(ωpe + Ωce ) of energy transfer between parallel and perpendicular, obtained from linear analysis, does not apply when damping is fully included, when we find it to be ωpe /(ωpe + Ωce ); here ωpe denotes the electron plasma frequency. We also find that the ADI can arise beyond the previously expected range of plasma parameters, in particular when Ωce > ωpe . The simulations also exhibit a spectral feature which may
correspond to observations of suprathermal narrowband emission at ωpe detected from low density tokamak plasmas
On quantization of weakly nonlinear lattices. Envelope solitons
A way of quantizing weakly nonlinear lattices is proposed. It is based on
introducing "pseudo-field" operators. In the new formalism quantum envelope
solitons together with phonons are regarded as elementary quasi-particles
making up boson gas. In the classical limit the excitations corresponding to
frequencies above linear cut-off frequency are reduced to conventional envelope
solitons. The approach allows one to identify the quantum soliton which is
localized in space and understand existence of a narrow soliton frequency band.Comment: 5 pages. Phys. Rev. E (to appear
Change of functions of the first person pronouns in Chinese
Selected papers from the 18th International Conference on Historical Linguistics, Montreal, 6-11 August 200
- …