31,703 research outputs found

    Asteroseismology of the δ\delta Scuti star HD 50844

    Full text link
    Aims. We aim to probe the internal structure and investigate more detailed information of the δ\delta Scuti star HD 50844 with asteroseismology. Methods. We analyse the observed frequencies of the δ\delta Scuti star HD 50844 obtained by Balona (2014), and search for possible multiplets based on the rotational splitting law of g-mode. We tried to disentangle the frequency spectra of HD 50844 by means of the rotational splitting only. We then compare them with theoretical pulsation modes, which correspond to stellar evolutionary models with various sets of initial metallicity and stellar mass, to find the best-fitting model. Results. There are three multiplets including two complete triplets and one incomplete quintuplet, in which mode identifications for spherical harmonic degree ll and azimuthal number mm are unique. The corresponding rotational period of HD 50844 is found to be 2.440.08+0.13^{+0.13}_{-0.08} days. The physical parameters of HD 50844 are well limited in a small region by three modes identified as nonradial ones (f11f_{11}, f22f_{22}, and f29f_{29}) and by the fundamental radial mode (f4f_{4}). Our results show that the three nonradial modes (f11f_{11}, f22f_{22}, and f29f_{29}) are all mixed modes, which mainly represent the property of the helium core. The fundamental radial mode (f4f_{4}) mainly represents the property of the stellar envelope. In order to fit these four pulsation modes, both the helium core and the stellar envelope must be matched to the actual structure of HD 50844. Finally, the mass of the helium core of HD 50844 is estimated to be 0.173 ±\pm 0.004 MM_{\odot} for the first time. The physical parameters of HD 50844 are determined to be M=M= 1.81 ±\pm 0.01 MM_{\odot}, Z=Z= 0.008 ±\pm 0.001. Teff=T_{\rm eff}= 7508 ±\pm 125 K, logg=g= 3.658 ±\pm 0.004, R=R= 3.300 ±\pm 0.023 RR_{\odot}, L=L= 30.98 ±\pm 2.39 LL_{\odot}.Comment: 11 pages, 7 figures, 6 tables, accepted for publication in A&

    Two-dimensional viscous flow computations of hypersonic scramjet nozzle flowfields at design and off-design conditions

    Get PDF
    The PARC2D code has been selected to analyze the flowfields of a representative hypersonic scramjet nozzle over a range of flight conditions from Mach 3 to 20. The flowfields, wall pressures, wall skin friction values, heat transfer values and overall nozzle performance are presented

    Binary Induced Neutron-Star Compression, Heating, and Collapse

    Get PDF
    We analyze several aspects of the recently noted neutron star collapse instability in close binary systems. We utilize (3+1) dimensional and spherical numerical general relativistic hydrodynamics to study the origin, evolution, and parametric sensitivity of this instability. We derive the modified conditions of hydrostatic equilibrium for the stars in the curved space of quasi-static orbits. We examine the sensitivity of the instability to the neutron star mass and equation of state. We also estimate limits to the possible interior heating and associated neutrino luminosity which could be generated as the stars gradually compress prior to collapse. We show that the radiative loss in neutrinos from this heating could exceed the power radiated in gravity waves for several hours prior to collapse. The possibility that the radiation neutrinos could produce gamma-ray (or other electromagnetic) burst phenomena is also discussed.Comment: 17 pages, 7 figure

    Improved targeted outdoor advertising based on geotagged social media data

    Get PDF
    With as many as 4 million passenger journeys within the London Underground system every weekday, the advertisement spaces across the stations hold considerable potential. However, the planning of specific advertisements across time and space is difficult to optimize as little is known about passers-by. Therefore, in order to generate detailed and quantifiable spatio-temporal information which is particular to each station area, we have explored local social media data. This research demonstrates how local interests can be mined from geotagged Tweets by using Latent Dirichlet Allocation, an unsupervised topic modelling method. The relative popularity of each of the key topics is then explored spatially and temporally between the station areas. Overall, this research demonstrates the value of using Geographical Information System and text-mining techniques to generate valuable spatio-temporal information on popular interests from Twitter data

    Exterior optical cloaking and illusions by using active sources: a boundary element perspective

    Full text link
    Recently, it was demonstrated that active sources can be used to cloak any objects that lie outside the cloaking devices [Phys. Rev. Lett. \textbf{103}, 073901 (2009)]. Here, we propose that active sources can create illusion effects, so that an object outside the cloaking device can be made to look like another object. invisibility is a special case in which the concealed object is transformed to a volume of air. From a boundary element perspective, we show that active sources can create a nearly "silent" domain which can conceal any objects inside and at the same time make the whole system look like an illusion of our choice outside a virtual boundary. The boundary element method gives the fields and field gradients (which can be related to monopoles and dipoles) on continuous curves which define the boundary of the active devices. Both the cloaking and illusion effects are confirmed by numerical simulations

    Dynamic Range Majority Data Structures

    Full text link
    Given a set PP of coloured points on the real line, we study the problem of answering range α\alpha-majority (or "heavy hitter") queries on PP. More specifically, for a query range QQ, we want to return each colour that is assigned to more than an α\alpha-fraction of the points contained in QQ. We present a new data structure for answering range α\alpha-majority queries on a dynamic set of points, where α(0,1)\alpha \in (0,1). Our data structure uses O(n) space, supports queries in O((lgn)/α)O((\lg n) / \alpha) time, and updates in O((lgn)/α)O((\lg n) / \alpha) amortized time. If the coordinates of the points are integers, then the query time can be improved to O(lgn/(αlglgn)+(lg(1/α))/α))O(\lg n / (\alpha \lg \lg n) + (\lg(1/\alpha))/\alpha)). For constant values of α\alpha, this improved query time matches an existing lower bound, for any data structure with polylogarithmic update time. We also generalize our data structure to handle sets of points in d-dimensions, for d2d \ge 2, as well as dynamic arrays, in which each entry is a colour.Comment: 16 pages, Preliminary version appeared in ISAAC 201

    General-relativistic coupling between orbital motion and internal degrees of freedom for inspiraling binary neutron stars

    Get PDF
    We analyze the coupling between the internal degrees of freedom of neutron stars in a close binary, and the stars' orbital motion. Our analysis is based on the method of matched asymptotic expansions and is valid to all orders in the strength of internal gravity in each star, but is perturbative in the ``tidal expansion parameter'' (stellar radius)/(orbital separation). At first order in the tidal expansion parameter, we show that the internal structure of each star is unaffected by its companion, in agreement with post-1-Newtonian results of Wiseman (gr-qc/9704018). We also show that relativistic interactions that scale as higher powers of the tidal expansion parameter produce qualitatively similar effects to their Newtonian counterparts: there are corrections to the Newtonian tidal distortion of each star, both of which occur at third order in the tidal expansion parameter, and there are corrections to the Newtonian decrease in central density of each star (Newtonian ``tidal stabilization''), both of which are sixth order in the tidal expansion parameter. There are additional interactions with no Newtonian analogs, but these do not change the central density of each star up to sixth order in the tidal expansion parameter. These results, in combination with previous analyses of Newtonian tidal interactions, indicate that (i) there are no large general-relativistic crushing forces that could cause the stars to collapse to black holes prior to the dynamical orbital instability, and (ii) the conventional wisdom with respect to coalescing binary neutron stars as sources of gravitational-wave bursts is correct: namely, the finite-stellar-size corrections to the gravitational waveform will be unimportant for the purpose of detecting the coalescences.Comment: 22 pages, 2 figures. Replaced 13 July: proof corrected, result unchange

    Single sample pathway analysis in metabolomics: performance evaluation and application

    Get PDF
    Background Single sample pathway analysis (ssPA) transforms molecular level omics data to the pathway level, enabling the discovery of patient-specific pathway signatures. Compared to conventional pathway analysis, ssPA overcomes the limitations by enabling multi-group comparisons, alongside facilitating numerous downstream analyses such as pathway-based machine learning. While in transcriptomics ssPA is a widely used technique, there is little literature evaluating its suitability for metabolomics. Here we provide a benchmark of established ssPA methods (ssGSEA, GSVA, SVD (PLAGE), and z-score) alongside the evaluation of two novel methods we propose: ssClustPA and kPCA, using semi-synthetic metabolomics data. We then demonstrate how ssPA can facilitate pathway-based interpretation of metabolomics data by performing a case-study on inflammatory bowel disease mass spectrometry data, using clustering to determine subtype-specific pathway signatures. Results While GSEA-based and z-score methods outperformed the others in terms of recall, clustering/dimensionality reduction-based methods provided higher precision at moderate-to-high effect sizes. A case study applying ssPA to inflammatory bowel disease data demonstrates how these methods yield a much richer depth of interpretation than conventional approaches, for example by clustering pathway scores to visualise a pathway-based patient subtype-specific correlation network. We also developed the sspa python package (freely available at https://pypi.org/project/sspa/), providing implementations of all the methods benchmarked in this study. Conclusion This work underscores the value ssPA methods can add to metabolomic studies and provides a useful reference for those wishing to apply ssPA methods to metabolomics data
    corecore