41,558 research outputs found
Generation of monodisperse droplets by spontaneous condensation of flow in nozzles
Submicron size monodisperse particles are of interest in many industrial and scientific applications. These include the manufacture of ceramic parts using fine ceramic particles, the production of thin films by deposition of ionized clusters, monodisperse seed particles for laser anemometry, and the study of size dependence of cluster chemical and physical properties. An inexpensive and relatively easy way to generate such particles is by utilizing the phenomenon of spontaneous condensation. The phenomenon occurs when the vapor or a mixture of a vapor and a noncondensing gas is expanded at a high expansion rate. The saturation line is crossed with the supercooled vapor behaving like a gas, until all of a sudden at the so called Wilson point, condensation occurs, resulting in a large number of relatively monodisperse droplets. The droplet size is a function of the expansion rate, inlet conditions, mass fraction of vapor, gas properties, etc. Spontaneous condensation of steam and water vapor and air mixture in a one dimensional nozzle was modeled and the resulting equations solved numerically. The droplet size distribution at the exit of various one dimensional nozzles and the flow characteristics such as pressure ratio, mean droplet radius, vapor and droplet temperatures, nucleation flux, supercooling, wetness, etc., along the axial distance were obtained. The numerical results compared very well with the available experimental data. The effect of inlet conditions, nozzle expansion rates, and vapor mass fractions on droplet mean radius, droplet size distribution, and pressure ratio were examined
Binary Induced Neutron-Star Compression, Heating, and Collapse
We analyze several aspects of the recently noted neutron star collapse
instability in close binary systems. We utilize (3+1) dimensional and spherical
numerical general relativistic hydrodynamics to study the origin, evolution,
and parametric sensitivity of this instability. We derive the modified
conditions of hydrostatic equilibrium for the stars in the curved space of
quasi-static orbits. We examine the sensitivity of the instability to the
neutron star mass and equation of state. We also estimate limits to the
possible interior heating and associated neutrino luminosity which could be
generated as the stars gradually compress prior to collapse. We show that the
radiative loss in neutrinos from this heating could exceed the power radiated
in gravity waves for several hours prior to collapse. The possibility that the
radiation neutrinos could produce gamma-ray (or other electromagnetic) burst
phenomena is also discussed.Comment: 17 pages, 7 figure
Viscous three-dimensional analyses for nozzles for hypersonic propulsion
A Navier-Stokes computer code was validated using a number of two- and three-dimensional configurations for both laminar and turbulent flows. The validation data covers a range of freestream Mach numbers from 3 to 14, includes wall pressures, velocity profiles, and skin friction. Nozzle flow fields computed for a generic scramjet nozzle from Mach 3 to 20, wall pressures, wall skin friction values, heat transfer values, and overall performance are presented. In addition, three-dimensional solutions obtained for two asymmetric, single expansion ramp nozzles at a pressure ratio of 10 consists of the internal expansion region in the converging/diverging sections and the external supersonic exhaust in a quiescent ambient environment. The fundamental characteristics that were captured successfully include expansion fans; Mach wave reflections; mixing layers; and nonsymmetrical, multiple inviscid cell, supersonic exhausts. Comparison with experimental data for wall pressure distributions at the center planes shows good agreement
Uncertainties of predictions from parton distribution functions II: the Hessian method
We develop a general method to quantify the uncertainties of parton
distribution functions and their physical predictions, with emphasis on
incorporating all relevant experimental constraints. The method uses the
Hessian formalism to study an effective chi-squared function that quantifies
the fit between theory and experiment. Key ingredients are a recently developed
iterative procedure to calculate the Hessian matrix in the difficult global
analysis environment, and the use of parameters defined as components along
appropriately normalized eigenvectors. The result is a set of 2d Eigenvector
Basis parton distributions (where d=16 is the number of parton parameters) from
which the uncertainty on any physical quantity due to the uncertainty in parton
distributions can be calculated. We illustrate the method by applying it to
calculate uncertainties of gluon and quark distribution functions, W boson
rapidity distributions, and the correlation between W and Z production cross
sections.Comment: 30 pages, Latex. Reference added. Normalization of Hessian matrix
changed to HEP standar
Post-Newtonian Models of Binary Neutron Stars
Using an energy variational method, we calculate quasi-equilibrium
configurations of binary neutron stars modeled as compressible triaxial
ellipsoids obeying a polytropic equation of state. Our energy functional
includes terms both for the internal hydrodynamics of the stars and for the
external orbital motion. We add the leading post-Newtonian (PN) corrections to
the internal and gravitational energies of the stars, and adopt hybrid orbital
terms which are fully relativistic in the test-mass limit and always accurate
to PN order. The total energy functional is varied to find quasi-equilibrium
sequences for both corotating and irrotational binaries in circular orbits. We
examine how the orbital frequency at the innermost stable circular orbit
depends on the polytropic index n and the compactness parameter GM/Rc^2. We
find that, for a given GM/Rc^2, the innermost stable circular orbit along an
irrotational sequence is about 17% larger than the innermost secularly stable
circular orbit along the corotating sequence when n=0.5, and 20% larger when
n=1. We also examine the dependence of the maximum neutron star mass on the
orbital frequency and find that, if PN tidal effects can be neglected, the
maximum equilibrium mass increases as the orbital separation decreases.Comment: 53 pages, LaTex, 9 figures as 10 postscript files, accepted by Phys.
Rev. D, replaced version contains updated reference
Vacuolar ATPase depletion contributes to dysregulation of endocytosis in bloodstream forms of Trypanosoma brucei
BACKGROUND
Vacuolar H-ATPase (V-ATPase) is a highly conserved protein complex which hydrolyzes ATP and pumps protons to acidify vacuolar vesicles. Beyond its role in pH maintenance, the involvement of V-ATPase in endocytosis is well documented in mammals and plants but is less clear in Trypanosoma brucei.
METHODS
In this study, the subcellular localization of V-ATPase subunit B (TbVAB) of T. brucei was assessed via in situ N-terminal YFP-tagging and immunofluorescence assays. Transgenic bloodstream forms (BSF) of T. brucei were generated which comprised either a V-ATPase subunit B (TbVAB) conditional knockout or a V-ATPase subunit A (TbVAA) knockdown. Acridine orange and BCECF-AM were employed to assess the roles of V-ATPase in the pH regulation of BSF T. brucei. The endocytic activities of three markers were also characterized by flow cytometry analyses. Furthermore, trypanosomes were counted from trypanolysis treatment groups (either containing 1% or 5% NHS) and endocytosed trypanosome lytic factor (TLF) was also analyzed by an immunoblotting assay.
RESULTS
TbVAB was found to localize to acidocalcisomes, lysosomes and probably also to endosomes of BSF of T. brucei and was demonstrated to be essential for cell growth. TbVAB depletion neutralized acidic organelles at 24 hours post-tetracycline depletion (hpd), meanwhile the steady state intracellular pH increased from 7.016 ± 0.013 to 7.422 ± 0.058. Trypanosomes with TbVAB depletion at 24 hpd were found to take up more transferrin (2.068 ± 0.277 fold) but less tomato lectin (49.31 ± 22.57%) by endocytosis, while no significant change was detected in dextran uptake. Similar endocytic dysregulated phenotypes were also observed in TbVAA knockdown cells. In addition, TbVAB depleted trypanosomes showed a low uptake of TLF and exhibited less sensitive to lysis in both 1% and 5% NHS treatments.
CONCLUSIONS
TbVAB is a key component of V-ATPase and was found to play a key function in endocytosis as well as exhibiting different effects in a receptor/cargo dependent manner in BSF of T. brucei. Besides vacuolar alkalinization, the dysregulation of endocytosis in TbVAB depleted T. brucei is considered to contribute to the reduced sensitivity to lysis by normal human serum
- …