264 research outputs found

    Saliency guided local and global descriptors for effective action recognition

    Get PDF
    This paper presents a novel framework for human action recognition based on salient object detection and a new combination of local and global descriptors. We first detect salient objects in video frames and only extract features for such objects. We then use a simple strategy to identify and process only those video frames that contain salient objects. Processing salient objects instead of all frames not only makes the algorithm more efficient, but more importantly also suppresses the interference of background pixels. We combine this approach with a new combination of local and global descriptors, namely 3D-SIFT and histograms of oriented optical flow (HOOF), respectively. The resulting saliency guided 3D-SIFT–HOOF (SGSH) feature is used along with a multi-class support vector machine (SVM) classifier for human action recognition. Experiments conducted on the standard KTH and UCF-Sports action benchmarks show that our new method outperforms the competing state-of-the-art spatiotemporal feature-based human action recognition metho

    3D GLOH features for human action recognition

    Get PDF
    Human action recognition from videos has wide applicability and receives significant interests. In this work, to better identify spatio-temporal characteristics, we propose a novel 3D extension of Gradient Location and Orientation Histograms, which provides discriminative local features representing not only the gradient orientation, but also their relative locations. We further propose a human action recognition system based on the Bag of Visual Words model, by combining the new 3D GLOH local features with Histograms of Oriented Optical Flow (HOOF) global features. Along with the idea from our recent work to extract features only in salient regions, our overall system outperforms existing feature descriptors for human action recognition for challenging real-world video datasets

    Опыт постижения истории, как духовного развития человечества

    Get PDF
    В статье рассматриваются методологические основы формирования концепции истории духовного развития человечества. Делается вывод об ограниченности монистического подхода к анализу истории становления человеческого духа, как материалистического, так и идеалистического. Рассматриваются возможности применения дуалистического подхода, основанного на принципах единства духовного и материального (дух вне материи не существует, материя вне духа бессмысленна), раскрытия их взаимодействия в глобальных противоречиях эпохи и снятия их в процессе цивилизованного переустройства мира. Рассматриваются гуманистические аспекты цивилизации, как наивысшей формы "культурной общности", "способа существования человеческого разума во Вселенной", раскрытия и обретения свободы в преобразовании мира. На основе продвижения человечества от космогенной – к техногенной, и от неё – антропогенной цивилизации, выделяется типы традиционной, инновационной и либеральной духовности. Делается вывод о том, что кризис либерального типа духовности предполагает формирование интеллектуально-нравственного типа духовности, как духовности современного технотронного общества

    3D indoor scene modeling from RGB-D data: a survey

    Get PDF
    3D scene modeling has long been a fundamental problem in computer graphics and computer vision. With the popularity of consumer-level RGB-D cameras, there is a growing interest in digitizing real-world indoor 3D scenes. However, modeling indoor 3D scenes remains a challenging problem because of the complex structure of interior objects and poor quality of RGB-D data acquired by consumer-level sensors. Various methods have been proposed to tackle these challenges. In this survey, we provide an overview of recent advances in indoor scene modeling techniques, as well as public datasets and code libraries which can facilitate experiments and evaluation

    Content-preserving image stitching with piecewise rectangular boundary constraints

    Get PDF
    This paper proposes an approach to content-preserving image stitching with regular boundary constraints, which aims to stitch multiple images to generate a panoramic image with a piecewise rectangular boundary. Existing methods treat image stitching and rectangling as two separate steps, which may result in suboptimal results as the stitching process is not aware of the further warping needs for rectangling. We address these limitations by formulating image stitching with regular boundaries in a unified optimization. Starting from the initial stitching results produced by the traditional warping-based optimization, we obtain the irregular boundary from the warped meshes by polygon Boolean operations which robustly handle arbitrary mesh compositions. By analyzing the irregular boundary, we construct a piecewise rectangular boundary. Based on this, we further incorporate line and regular boundary preservation constraints into the image stitching framework, and conduct iterative optimization to obtain an optimal piecewise rectangular boundary. Thus we can make the boundary of the stitching results as close as possible to a rectangle, while reducing unwanted distortions. We further extend our method to video stitching, by integrating the temporal coherence into the optimization. Experiments show that our method efficiently produces visually pleasing panoramas with regular boundaries and unnoticeable distortions

    Stereoscopic image stitching with rectangular boundaries

    Get PDF
    This paper proposes a novel algorithm for stereoscopic image stitching, which aims to produce stereoscopic panoramas with rectangular boundaries. As a result, it provides wider field of view and better viewing experience for users. To achieve this, we formulate stereoscopic image stitching and boundary rectangling in a global optimization framework that simultaneously handles feature alignment, disparity consistency and boundary regularity. Given two (or more) stereoscopic images with overlapping content, each containing two views (for left and right eyes), we represent each view using a mesh and our algorithm contains three main steps: We first perform a global optimization to stitch all the left views and right views simultaneously, which ensures feature alignment and disparity consistency. Then, with the optimized vertices in each view, we extract the irregular boundary in the stereoscopic panorama, by performing polygon Boolean operations in left and right views, and construct the rectangular boundary constraints. Finally, through a global energy optimization, we warp left and right views according to feature alignment, disparity consistency and rectangular boundary constraints. To show the effectiveness of our method, we further extend our method to disparity adjustment and stereoscopic stitching with large horizon. Experimental results show that our method can produce visually pleasing stereoscopic panoramas without noticeable distortion or visual fatigue, thus resulting in satisfactory 3D viewing experience
    corecore