60 research outputs found

    A panel based on three-miRNAs as diagnostic biomarker for prostate cancer

    Get PDF
    Background: Prostate cancer (PCa) is one of the most prevalent malignancies affecting the male life cycle. The incidence and mortality of prostate cancer are also increasing every year. Detection of MicroRNA expression in serum to diagnose prostate cancer and determine prognosis is a very promising non-invasive modality.Materials and method: A total of 224 study participants were included in our study, including 112 prostate cancer patients and 112 healthy adults. The experiment consisted of three main phases, namely, the screening phase, the testing phase, and the validation phase. The expression levels of serum miRNAs in patients and healthy adults were detected using quantitative reverse transcription-polymerase chain reaction. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used to evaluate the diagnostic ability, specificity, and sensitivity of the candidate miRNAs.Result: Eventually, three miRNAs most relevant to prostate cancer diagnosis were selected, namely, miR-106b-5p, miR-129-1-3p and miR-381-3p. We used these three miRNAs to construct a diagnostic panel with very high diagnostic potential for prostate cancer, which had an AUC of 0.912 [95% confidence interval (CI): 0.858 to 0.950; p < 0.001; sensitivity = 91.67%; specificity = 79.76%]. In addition, the three target genes (DTNA, GJB1, and TRPC4) we searched for are also expected to be used for prostate cancer diagnosis and treatment in the future

    A four-microRNA panel in serum may serve as potential biomarker for renal cell carcinoma diagnosis

    Get PDF
    BackgroundRenal cell carcinoma (RCC) is one out of the most universal malignant tumors globally, and its incidence is increasing annually. MicroRNA (miRNA) in serum could be considered as a non-invasive detecting biomarker for RCC diagnosis.MethodA total of 224 participants (112 RCC patients (RCCs) and 112 normal controls (NCs)) were enrolled in the three-phrase study. Reverse transcription quantitative PCR (RT-qPCR) was applied to reveal the miRNA expression levels in RCCs and NCs. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were utilized to predict the diagnostic ability of serum miRNAs for RCC. Bioinformatic analysis and survival analysis were also included in our study.ResultsCompared to NCs, the expression degree of miR-155-5p, miR-224-5p in serum was significantly upregulated in RCC patients, and miR-1-3p, miR-124-3p, miR-129-5p, and miR-200b-3p were downregulated. A four-miRNA panel was construed, and the AUC of the panel was 0.903 (95% CI: 0.847–0.944; p < 0.001; sensitivity = 75.61%, specificity = 93.67%). Results from GEPIA database indicated that CHL1, MPP5, and SORT1 could be seen as promising target genes of the four-miRNA panel. Survival analysis of candidate miRNAs manifested that miR-155-5p was associated with the survival rate of RCC significantly.ConclusionsThe four-miRNA panel in serum has a great potential to be non-invasive biomarkers for RCC sift to check

    Developmental expression and function of DKKL1/Dkkl1 in humans and mice

    Full text link
    Background: Experiments were designed to identify the developmental expression and function of the Dickkopf-Like1 (DKKL1/Dkkl1) gene in humans and mice. Methods: Mouse testes cDNA samples were collected at multiple postnatal times (days 4, 9, 18, 35, and 54, as well as at 6 months) and hybridized to Affymetrix mouse whole genome Genechips. To further characterize the homologous gene DKKL1 in human beings, the expression profiles between human adult testis and foetal testis were compared using Affymetrix human Genechips. The characteristics of DKKL1/Dkkl1 were analysed using various cellular and molecular biotechnologies. Results: The expression of Dkkl1 was not detected in mouse testes on days 4 or 9, but was present on days 18, 35, and 54, as well as at 6 months, which was confirmed by RT-PCR and Western blot results. Examination of the tissue distribution of Dkkl1 demonstrated that while Dkkl1 mRNA was abundantly expressed in testes, little to no expression of Dkkl1 was observed in the epididymis or other tissues. In an in vitro fertilization assay, a Dkkl1 antibody was found to significantly reduce fertilization. Human Genechips results showed that the hybridization signal intensity of DKKL1 was 405.56-fold higher in adult testis than in foetal testis. RT-PCR analysis of multiple human tissues indicated that DKKL1 mRNA was exclusively expressed in the testis. Western blot analysis also demonstrated that DKKL1 was mainly expressed in human testis with a molecular weight of approximately 34 kDa. Additionally, immunohistochemical staining showed that the DKKL1 protein was predominantly located in spermatocytes and round spermatids in human testes. An examination of the expression levels of DKKL1 in infertile male patients revealed that while no DKKL1 appeared in the testes of patients with Sertoli cell only syndrome (SCOS) or cryptorchidism, DKKL1 was observed with variable expression in patients with spermatogenic arrest. Conclusions: These results, together with previous studies, suggest that DKKL1/Dkkl1 may play an important role in testicular development and spermatogenesis and may be an important factor in male infertility.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000308911000001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Endocrinology & MetabolismReproductive BiologySCI(E)3ARTICLEnull1

    Deficiency of Antinociception and Excessive Grooming Induced by Acute Immobilization Stress in Per1 Mutant Mice

    Get PDF
    Acute stressors induce changes in numerous behavioral parameters through activation of the hypothalamic-pituitary-adrenal (HPA) axis. Several important hormones in paraventricular nucleus of the hypothalamus (PVN) play the roles in these stress-induced reactions. Corticotropin-releasing hormone (CRH), arginine-vasopressin (AVP) and corticosterone are considered as molecular markers for stress-induced grooming behavior. Oxytocin in PVN is an essential modulator for stress-induced antinociception. The clock gene, Per1, has been identified as an effecter response to the acute stresses, but its function in neuroendocrine stress systems remains unclear. In the present study we observed the alterations in grooming and nociceptive behaviors induced by acute immobilization stress in Per1 mutant mice and other genotypes (wild types and Per2 mutant). The results displayed that stress elicited a more robust effect on grooming behavior in Per1 mutant mice than in other genotypes. Subsequently, the obvious stress-induced antinociception was observed in the wild-type and Per2 mutant mice, however, in Per1 mutant, this antinociceptive effects were partially-reversed (mechanical sensitivity), or over-reversed to hyperalgesia (thermal sensitivity). The real-time qPCR results showed that in PVN, there were stress-induced up-regulations of Crh, Avp and c-fos in all of genotypes; moreover, the expression change of Crh in Per1 mutant mice was much larger than in others. Another hormonal gene, Oxt, was up-regulated induced by stress in wild-type and Per2 mutant but not in Per1 mutant. In addition, the stress significantly elevated the serum corticosterone levels without genotype-dependent differences, and accordingly the glucocorticoid receptor gene, Nr3c1, expressed with a similar pattern in PVN of all strains. Taken together, the present study indicated that in acute stress treated Per1 mutant mice, there are abnormal hormonal responses in PVN, correlating with the aberrant performance of stress-induced behaviors. Therefore, our findings suggest a novel functional role of Per1 in neuroendocrine stress system, which further participates in analgesic regulation

    Site-specific soil reaction model for monopiles in soft clay based on laboratory element stress-strain curves

    Get PDF
    Large-diameter monopiles are the predominant foundation solution for supporting offshore wind turbines. They are conventionally designed using soil reaction curves developed for long slender piles used for supporting offshore oil and gas platforms (e.g., the API p-y model). However, due to the difference in the length/diameter ratio and the resulting soil mechanisms, the use of p-y curves alone can lead to significant under-prediction of the lateral stiffness and capacity of monopiles. To overcome the shortcoming, the authors have previously proposed a conceptual two-spring framework, i.e., the so-called ‘p-y + MR-θR’ model, to capture the monopile response in soft clay under lateral loading. The framework uses distributed p-y springs to consider the lateral soil resistance along the pile above the rotation point (RP) and a single moment-rotation (MR-θR) spring attached at the RP to capture the entire soil resistance below the RP, i.e., the distributed resistance along the pile, base shear and base moment at the pile tip. The proposed p-y and MR-θR springs were curve-fitted to the results of 3D numerical analyses. However, as the stress-strain response and the shear strength profile inevitably influence the p-y and MR-θR springs, the applicability of the empirical formulations to soil conditions other than those examined is uncertain. This study proposes an enhancement to the ‘p-y + MR-θR’ framework, in which the p-y and MR-θR springs are not tied to a specific soil and strength profile but fundamentally linked to the properties that can be measured directly in the site investigation and laboratory. This extension is achieved through analytical analyses and an extensive parametric numerical study. The predictive capabilities of the model are demonstrated by backanalyses of finite element analyses and centrifuge model tests. The proposed model provides practising engineers with a simple yet powerful approach to use site-specific soil reaction curves in the design of monopiles embedded in soft clay.publishedVersio

    Site-specific soil reaction model for monopiles in soft clay based on laboratory element stress-strain curves

    Get PDF
    Large-diameter monopiles are the predominant foundation solution for supporting offshore wind turbines. They are conventionally designed using soil reaction curves developed for long slender piles used for supporting offshore oil and gas platforms (e.g., the API p-y model). However, due to the difference in the length/diameter ratio and the resulting soil mechanisms, the use of p-y curves alone can lead to significant under-prediction of the lateral stiffness and capacity of monopiles. To overcome the shortcoming, the authors have previously proposed a conceptual two-spring framework, i.e., the so-called ‘p-y + MR-θR’ model, to capture the monopile response in soft clay under lateral loading. The framework uses distributed p-y springs to consider the lateral soil resistance along the pile above the rotation point (RP) and a single moment-rotation (MR-θR) spring attached at the RP to capture the entire soil resistance below the RP, i.e., the distributed resistance along the pile, base shear and base moment at the pile tip. The proposed p-y and MR-θR springs were curve-fitted to the results of 3D numerical analyses. However, as the stress-strain response and the shear strength profile inevitably influence the p-y and MR-θR springs, the applicability of the empirical formulations to soil conditions other than those examined is uncertain. This study proposes an enhancement to the ‘p-y + MR-θR’ framework, in which the p-y and MR-θR springs are not tied to a specific soil and strength profile but fundamentally linked to the properties that can be measured directly in the site investigation and laboratory. This extension is achieved through analytical analyses and an extensive parametric numerical study. The predictive capabilities of the model are demonstrated by backanalyses of finite element analyses and centrifuge model tests. The proposed model provides practising engineers with a simple yet powerful approach to use site-specific soil reaction curves in the design of monopiles embedded in soft clay

    Identification of PCAG1 as a novel prostate cancer-associated gene

    No full text
    The aim of the present study was to identify a new prostate cancer-associated gene and analyze its expression pattern. Comprehensive expression analysis of expressed sequence tags (ESTs) and microarray data and serial analysis of gene expression (SAGE) were conducted to screen in silico for candidate prostate cancer-associated genes. Reverse transcription (RT)-PCR was performed to validate prostate cancer specificity. Prostate cancer-associated gene 1 (PCAG1) was identified. The expression of PCAG1 mRNA and protein was evaluated in common human normal tissues, common malignant tumors, prostate adenocarcinoma and paired adjacent normal prostate tissues. An immunofluorescence assay was conducted to determine the subcellular location of PCAG1. PCAG1 mRNA was absent in the 15 pooled normal tissues (including normal prostate tissue) but registered at low levels in the spleen tissue (+). By contrast, PCAG1 mRNA was significantly higher than in the adjacent normal tissues in each of the 14 cases of prostate cancer, with similar to 50% scoring a high degree of expression (+++). Of the 32 types of normal tissues, 29 (including normal prostate tissue) demonstrated negative PCAG1 protein staining while the remaining tissues of the adrenal gland, parathyroid gland and liver expressed low levels. While 18/20 cases of prostate adenocarcinoma showed positive expression results, PCAG1 protein expression in the remaining types of cancer was scarce when present at all; only 41/380 other cancer cases demonstrated positive results at a low level. The most substantial PCAG1-positive expression results were identified by cytoplasmic staining in 36/38 prostate adenocarcinoma cases, with 10 cases showing high expression levels, 20 showing medium levels and 6 showing low levels. In the paired adjacent normal prostate tissues, only 3/38 cases showed low level positive staining, while 35/38 cases were negative. Immunofluorescent staining of the human prostate cancer PC3 cell line showed positive PCAG1 expression results in the mitochondria. The present study demonstrated that while PCAG1 mRNA was highly expressed in prostate cancer tissues, it was almost absent in all common normal tissues and paired adjacent normal prostate tissues. Furthermore, PCAG1 protein was also highly expressed in prostate cancer tissues, while few common normal tissues, other common malignant tumors and paired adjacent normal prostate tissues had even low levels of expression. Clarification of the function and transcriptional mechanism of PCAG1 may aid the elucidation of the mechanisms of carcinogenesis and progression of prostate cancer. The unique expression pattern of PCAG1 suggests its potential in certain clinical applications

    Scour Effects on the Lateral Behavior of a Large-Diameter Monopile in Soft Clay: Role of Stress History

    No full text
    Scouring of soil around large-diameter monopile will alter the stress history, and therefore the stiffness and strength of the soil at shallow depth, with important consequence to the lateral behavior of piles. The existing study is mainly focused on small-diameter piles under scouring, where the soil around a pile is analyzed with two simplified approaches: (I) simply removing the scour layers without changing the strength and stiffness of the remaining soils, or (II) solely considering the effects of stress history on the soil strength. This study aims to investigate and quantify the scour effect on the lateral behavior of monopile, based on an advanced hypoplastic model considering the influence of stress history on both soil stiffness and strength. It is revealed that ignorance about the stress history effect (due to scouring) underestimates the extent of the soil failure wedge around the monopile, while overestimates soil stiffness and strength. As a result, a large-diameter pile (diameter D = 5 m) in soft clay subjected to a souring depth of 0.5 D has experienced reductions in ultimate soil resistance and initial stiffness of the p-y curves by 40% and 26%, and thus an increase of pile head deflection by 49%. Due to the inadequacy to consider the stress history effects revealed above, the existing approach (I) has led to non-conservative estimation, while the approach (II) has resulted in an over-conservative prediction

    Influence of Blade Flexibility on the Dynamic Behaviors of Monopile-Supported Offshore Wind Turbines

    No full text
    At present, monopile-supported offshore wind turbines (MOWTs) are widely used in offshore wind farms. The influence of blade flexibility on the dynamic behaviors of MOWTs excited by waves and earthquakes was investigated in this study. Numerical analysis models were established for 5 MW and 10 MW MOWTs, incorporating flexible and rigid blade configurations. The modes and natural frequencies of the full system were compared between these two numerical models, and their dynamic responses were evaluated under wave-only and earthquake-only excitations. It was revealed that the influence of blade flexibility on the first- and second-order modes of the system can be neglected. The dynamic response of these MOWTs under wave excitation can be predicted by the rigid blade model, where the maximum relative difference is less than 5%. However, higher-order modes of the system are significantly affected by the blade flexibility. Under high-frequency excitations, these higher-order modes of the system are remarkably stimulated. Additionally, a large relative difference, exceeding 50%, is detected when the rigid blade model is used to predict the seismic response of the two MOWTs. Consequently, the blade flexibility should be adequately modeled when predicting the dynamic response of OWTs
    • …
    corecore