7 research outputs found

    Yeast hEST1A/B (SMG5/6)- Like proteins contribute to environment-sensing adaptive gene expression responses

    Get PDF
    During its natural life cycle, budding yeast (Saccharomyces cerevisiae) has to adapt to drastically changing environments, but how environmental-sensing pathways are linked to adaptive gene expression changes remains incompletely understood. Here, we des

    Chlorambucil targets BRCA1/2-deficient tumours and counteracts PARP inhibitor resistance.

    Get PDF
    Due to compromised homologous recombination (HR) repair, BRCA1- and BRCA2-mutated tumours accumulate DNA damage and genomic rearrangements conducive of tumour progression. To identify drugs that target specifically BRCA2-deficient cells, we screened a chemical library containing compounds in clinical use. The top hit was chlorambucil, a bifunctional alkylating agent used for the treatment of chronic lymphocytic leukaemia (CLL). We establish that chlorambucil is specifically toxic to BRCA1/2-deficient cells, including olaparib-resistant and cisplatin-resistant ones, suggesting the potential clinical use of chlorambucil against disease which has become resistant to these drugs. Additionally, chlorambucil eradicates BRCA2-deficient xenografts and inhibits growth of olaparib-resistant patient-derived tumour xenografts (PDTXs). We demonstrate that chlorambucil inflicts replication-associated DNA double-strand breaks (DSBs), similarly to cisplatin, and we identify ATR, FANCD2 and the SNM1A nuclease as determinants of sensitivity to both drugs. Importantly, chlorambucil is substantially less toxic to normal cells and tissues in vitro and in vivo relative to cisplatin. Because chlorambucil and cisplatin are equally effective inhibitors of BRCA2-compromised tumours, our results indicate that chlorambucil has a higher therapeutic index than cisplatin in targeting BRCA-deficient tumours.This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska‐Curie grant agreement No. 722729. Research in M.T. laboratory is supported by Cancer Research UK, Medical Research Council and University of Oxford

    Molecular Basis for Lysine Specificity in the Yeast Ubiquitin-Conjugating Enzyme Cdc34 ▿

    Get PDF
    Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination

    BRCA

    No full text
    Maintenance of genome integrity requires the functional interplay between Fanconi anemia (FA) and homologous recombination (HR) repair pathways. Endogenous acetaldehyde, a product of cellular metabolism, is a potent source of DNA damage, particularly toxic to cells and mice lacking the FA protein FANCD2. Here, we investigate whether HR-compromised cells are sensitive to acetaldehyde, similarly to FANCD2-deficient cells. We demonstrate that inactivation of HR factors BRCA1, BRCA2, or RAD51 hypersensitizes cells to acetaldehyde treatment, in spite of the FA pathway being functional. Aldehyde dehydrogenases (ALDHs) play key roles in endogenous acetaldehyde detoxification, and their chemical inhibition leads to cellular acetaldehyde accumulation. We find that disulfiram (Antabuse), an ALDH2 inhibitor in widespread clinical use for the treatment of alcoholism, selectively eliminates BRCA1/2-deficient cells. Consistently, Aldh2 gene inactivation suppresses proliferation of HR-deficient mouse embryonic fibroblasts (MEFs) and human fibroblasts. Hypersensitivity of cells lacking BRCA2 to acetaldehyde stems from accumulation of toxic replication-associated DNA damage, leading to checkpoint activation, G2/M arrest, and cell death. Acetaldehyde-arrested replication forks require BRCA2 and FANCD2 for protection against MRE11-dependent degradation. Importantly, acetaldehyde specifically inhibits in vivo the growth of BRCA1/2-deficient tumors and ex vivo in patient-derived tumor xenograft cells (PDTCs), including those that are resistant to poly (ADP-ribose) polymerase (PARP) inhibitors. The work presented here therefore identifies acetaldehyde metabolism as a potential therapeutic target for the selective elimination of BRCA1/2-deficient cells and tumors

    Chlorambucil targets BRCA1/2‐deficient tumours and counteracts PARP inhibitor resistance

    No full text
    Abstract Due to compromised homologous recombination (HR) repair, BRCA1‐ and BRCA2‐mutated tumours accumulate DNA damage and genomic rearrangements conducive of tumour progression. To identify drugs that target specifically BRCA2‐deficient cells, we screened a chemical library containing compounds in clinical use. The top hit was chlorambucil, a bifunctional alkylating agent used for the treatment of chronic lymphocytic leukaemia (CLL). We establish that chlorambucil is specifically toxic to BRCA1/2‐deficient cells, including olaparib‐resistant and cisplatin‐resistant ones, suggesting the potential clinical use of chlorambucil against disease which has become resistant to these drugs. Additionally, chlorambucil eradicates BRCA2‐deficient xenografts and inhibits growth of olaparib‐resistant patient‐derived tumour xenografts (PDTXs). We demonstrate that chlorambucil inflicts replication‐associated DNA double‐strand breaks (DSBs), similarly to cisplatin, and we identify ATR, FANCD2 and the SNM1A nuclease as determinants of sensitivity to both drugs. Importantly, chlorambucil is substantially less toxic to normal cells and tissues in vitro and in vivo relative to cisplatin. Because chlorambucil and cisplatin are equally effective inhibitors of BRCA2‐compromised tumours, our results indicate that chlorambucil has a higher therapeutic index than cisplatin in targeting BRCA‐deficient tumours
    corecore