40,204 research outputs found

    Asteroseismology of the δ\delta Scuti star HD 50844

    Full text link
    Aims. We aim to probe the internal structure and investigate more detailed information of the δ\delta Scuti star HD 50844 with asteroseismology. Methods. We analyse the observed frequencies of the δ\delta Scuti star HD 50844 obtained by Balona (2014), and search for possible multiplets based on the rotational splitting law of g-mode. We tried to disentangle the frequency spectra of HD 50844 by means of the rotational splitting only. We then compare them with theoretical pulsation modes, which correspond to stellar evolutionary models with various sets of initial metallicity and stellar mass, to find the best-fitting model. Results. There are three multiplets including two complete triplets and one incomplete quintuplet, in which mode identifications for spherical harmonic degree ll and azimuthal number mm are unique. The corresponding rotational period of HD 50844 is found to be 2.440.08+0.13^{+0.13}_{-0.08} days. The physical parameters of HD 50844 are well limited in a small region by three modes identified as nonradial ones (f11f_{11}, f22f_{22}, and f29f_{29}) and by the fundamental radial mode (f4f_{4}). Our results show that the three nonradial modes (f11f_{11}, f22f_{22}, and f29f_{29}) are all mixed modes, which mainly represent the property of the helium core. The fundamental radial mode (f4f_{4}) mainly represents the property of the stellar envelope. In order to fit these four pulsation modes, both the helium core and the stellar envelope must be matched to the actual structure of HD 50844. Finally, the mass of the helium core of HD 50844 is estimated to be 0.173 ±\pm 0.004 MM_{\odot} for the first time. The physical parameters of HD 50844 are determined to be M=M= 1.81 ±\pm 0.01 MM_{\odot}, Z=Z= 0.008 ±\pm 0.001. Teff=T_{\rm eff}= 7508 ±\pm 125 K, logg=g= 3.658 ±\pm 0.004, R=R= 3.300 ±\pm 0.023 RR_{\odot}, L=L= 30.98 ±\pm 2.39 LL_{\odot}.Comment: 11 pages, 7 figures, 6 tables, accepted for publication in A&

    Impact of edge-removal on the centrality betweenness of the best spreaders

    Full text link
    The control of epidemic spreading is essential to avoid potential fatal consequences and also, to lessen unforeseen socio-economic impact. The need for effective control is exemplified during the severe acute respiratory syndrome (SARS) in 2003, which has inflicted near to a thousand deaths as well as bankruptcies of airlines and related businesses. In this article, we examine the efficacy of control strategies on the propagation of infectious diseases based on removing connections within real world airline network with the associated economic and social costs taken into account through defining appropriate quantitative measures. We uncover the surprising results that removing less busy connections can be far more effective in hindering the spread of the disease than removing the more popular connections. Since disconnecting the less popular routes tend to incur less socio-economic cost, our finding suggests the possibility of trading minimal reduction in connectivity of an important hub with efficiencies in epidemic control. In particular, we demonstrate the performance of various local epidemic control strategies, and show how our approach can predict their cost effectiveness through the spreading control characteristics.Comment: 11 pages, 4 figure

    Two-dimensional viscous flow computations of hypersonic scramjet nozzle flowfields at design and off-design conditions

    Get PDF
    The PARC2D code has been selected to analyze the flowfields of a representative hypersonic scramjet nozzle over a range of flight conditions from Mach 3 to 20. The flowfields, wall pressures, wall skin friction values, heat transfer values and overall nozzle performance are presented

    Self-normalized processes: exponential inequalities, moment bounds and iterated logarithm laws

    Full text link
    Self-normalized processes arise naturally in statistical applications. Being unit free, they are not affected by scale changes. Moreover, self-normalization often eliminates or weakens moment assumptions. In this paper we present several exponential and moment inequalities, particularly those related to laws of the iterated logarithm, for self-normalized random variables including martingales. Tail probability bounds are also derived. For random variables B_t>0 and A_t, let Y_t(\lambda)=\exp{\lambda A_t-\lambda ^2B_t^2/2}. We develop inequalities for the moments of A_t/B_{t} or sup_{t\geq 0}A_t/{B_t(\log \log B_{t})^{1/2}} and variants thereof, when EY_t(\lambda )\leq 1 or when Y_t(\lambda) is a supermartingale, for all \lambda belonging to some interval. Our results are valid for a wide class of random processes including continuous martingales with A_t=M_t and B_t=\sqrt _t, and sums of conditionally symmetric variables d_i with A_t=\sum_{i=1}^td_i and B_t=\sqrt\sum_{i=1}^td_i^2. A sharp maximal inequality for conditionally symmetric random variables and for continuous local martingales with values in R^m, m\ge 1, is also established. Another development in this paper is a bounded law of the iterated logarithm for general adapted sequences that are centered at certain truncated conditional expectations and self-normalized by the square root of the sum of squares. The key ingredient in this development is a new exponential supermartingale involving \sum_{i=1}^td_i and \sum_{i=1}^td_i^2.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000039

    Viscous three-dimensional analyses for nozzles for hypersonic propulsion

    Get PDF
    A Navier-Stokes computer code was validated using a number of two- and three-dimensional configurations for both laminar and turbulent flows. The validation data covers a range of freestream Mach numbers from 3 to 14, includes wall pressures, velocity profiles, and skin friction. Nozzle flow fields computed for a generic scramjet nozzle from Mach 3 to 20, wall pressures, wall skin friction values, heat transfer values, and overall performance are presented. In addition, three-dimensional solutions obtained for two asymmetric, single expansion ramp nozzles at a pressure ratio of 10 consists of the internal expansion region in the converging/diverging sections and the external supersonic exhaust in a quiescent ambient environment. The fundamental characteristics that were captured successfully include expansion fans; Mach wave reflections; mixing layers; and nonsymmetrical, multiple inviscid cell, supersonic exhausts. Comparison with experimental data for wall pressure distributions at the center planes shows good agreement
    corecore