5,295 research outputs found

    Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution

    Full text link
    Convolutional neural networks have recently demonstrated high-quality reconstruction for single-image super-resolution. In this paper, we propose the Laplacian Pyramid Super-Resolution Network (LapSRN) to progressively reconstruct the sub-band residuals of high-resolution images. At each pyramid level, our model takes coarse-resolution feature maps as input, predicts the high-frequency residuals, and uses transposed convolutions for upsampling to the finer level. Our method does not require the bicubic interpolation as the pre-processing step and thus dramatically reduces the computational complexity. We train the proposed LapSRN with deep supervision using a robust Charbonnier loss function and achieve high-quality reconstruction. Furthermore, our network generates multi-scale predictions in one feed-forward pass through the progressive reconstruction, thereby facilitates resource-aware applications. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of speed and accuracy.Comment: This work is accepted in CVPR 2017. The code and datasets are available on http://vllab.ucmerced.edu/wlai24/LapSRN

    (4RS)-Methyl 4-cyano-4-cyclo­hexyl-4-phenyl­butano­ate

    Get PDF
    In the crystal structure of the title compound, C18H23NO2, there are only van der Waals inter­actions present. The cyclo­hexyl ring has a chair conformation. The longer axes of the displacement parameters of the non-H atoms forming the ethyl­methyl­carboxyl­ate skeleton are perpendicular to the plane through the non-H atoms of this skeleton

    Efficacy of Intravenous Immunoglobulin/Exchange Transfusion Therapy on Gestational Alloimmune Liver Disease

    Get PDF
    Background: Gestational alloimmune liver disease (GALD) is a rare but critical cause of neonatal liver failure. After discovering the maternal–fetal alloimmune mechanism, intravenous immunoglobulin (IVIG) with or without exchange transfusion (ET) has gradually replaced antioxidant cocktails as the first-line therapy. Whether such therapy changes the outcome of neonates with GALD is yet to be defined.Method: We reported a pair of twins with discordant presentations, mild and self-limited in the older, whereas liver failure in the younger, who was successfully rescued by ET and IVIG. To investigate the outcome after therapeutic alteration, 39 cases between 2005 and 2020 from literature research were collected.Results: Half of the collected cases (47.1%) were preterm. Common presentations were ascites, jaundice, respiratory distress, hepatomegaly, and edema. Leading laboratory abnormalities were coagulopathy, hypoalbuminemia, and elevated serum ferritin. Salivary gland biopsy and magnetic resonance imaging detected extrahepatic siderosis in 70% (14/20) and 56% (14/25), respectively. IVIG, ET, and liver transplantation were performed in 19 (48.7%), 15 (38.5%), and 8 (20.5%) patients, respectively. The overall survival (OS) rate and native liver survival (NLS) rate were 64.1% (25/39) and 43.6% (17/39), respectively. Although the compiled results did not support a significant benefit, the OS and NLS were higher in the IVIG with/without ET group compared with those treated with conventional therapy [OS (70 vs. 57.9%) and NLS (55 vs. 31.6%), respectively].Conclusion: A high index of suspicion for GALD is crucial when facing a neonate with liver failure. Despite no significant influence on the outcome over conventional therapy in such a rare and detrimental disease, IVIG with or without ET can be worth trying before resorting to liver transplantation, which is resource-demanding and technique-challenging in small infants

    Observation of earlier two-to-three dimensional structural transition in gold cluster anions by isoelectronic substitution: Mau\u3csub\u3e\u3ci\u3en\u3c/i\u3e\u3csup\u3e- \u3c/sup\u3e\u3c/sub\u3e (n=8–11; M=Ag,Cu)

    Get PDF
    The effects of isoelectronic substitution on the electronic and structural properties of gold clusters are investigated in the critical size range of the two-dimensional (2D)-three-dimensional (3D) structural transition (MAun −, n=8–11; M=Ag,Cu) using photoelectron spectroscopy and density functional calculations. Photoelectron spectra of MAun − are found to be similar to those of the bare gold clusters Aun+1 − , indicating that substitution of a Au atom by a Ag or Cu atom does not significantly alter the geometric and electronic structures of the clusters. The only exception occurs at n=10, where very different spectra are observed for MAu10 − from Au11 −, suggesting a major structural change in the doped clusters. Our calculations confirm that MAu8 − − possesses the same structure as Au9 − with Ag or Cu simply replacing one Au atom in its C2v planar global minimum structure. Two close-lying substitution isomers are observed, one involves the replacement of a center Au atom and another one involves an edge site. For Au10 − we identify three coexisting low-lying planar isomers along with the D3h global minimum. The coexistence of so many low-lying isomers for the small-sized gold cluster Au10 − is quite unprecedented. Similar planar structures and isomeric forms are observed for the doped MAu9 − clusters. Although the global minimum of Au11 − is planar, our calculations suggest that only simulated spectra of 3D structures agree with the observed spectra for MAu10 −. For MAu11 −, only a 3D isomer is observed, in contrast to Au12 − which is the critical size for the 2D-3D structural transition with both the 2D and 3D isomers coexisting. The current work shows that structural perturbations due to even isoelectronic substitution of a single Au atom shift the 2D to 3D structural transition of gold clusters to a smaller size

    Observation of earlier two-to-three dimensional structural transition in gold cluster anions by isoelectronic substitution: Mau\u3csub\u3e\u3ci\u3en\u3c/i\u3e\u3csup\u3e- \u3c/sup\u3e\u3c/sub\u3e (n=8–11; M=Ag,Cu)

    Get PDF
    The effects of isoelectronic substitution on the electronic and structural properties of gold clusters are investigated in the critical size range of the two-dimensional (2D)-three-dimensional (3D) structural transition (MAun −, n=8–11; M=Ag,Cu) using photoelectron spectroscopy and density functional calculations. Photoelectron spectra of MAun − are found to be similar to those of the bare gold clusters Aun+1 − , indicating that substitution of a Au atom by a Ag or Cu atom does not significantly alter the geometric and electronic structures of the clusters. The only exception occurs at n=10, where very different spectra are observed for MAu10 − from Au11 −, suggesting a major structural change in the doped clusters. Our calculations confirm that MAu8 − − possesses the same structure as Au9 − with Ag or Cu simply replacing one Au atom in its C2v planar global minimum structure. Two close-lying substitution isomers are observed, one involves the replacement of a center Au atom and another one involves an edge site. For Au10 − we identify three coexisting low-lying planar isomers along with the D3h global minimum. The coexistence of so many low-lying isomers for the small-sized gold cluster Au10 − is quite unprecedented. Similar planar structures and isomeric forms are observed for the doped MAu9 − clusters. Although the global minimum of Au11 − is planar, our calculations suggest that only simulated spectra of 3D structures agree with the observed spectra for MAu10 −. For MAu11 −, only a 3D isomer is observed, in contrast to Au12 − which is the critical size for the 2D-3D structural transition with both the 2D and 3D isomers coexisting. The current work shows that structural perturbations due to even isoelectronic substitution of a single Au atom shift the 2D to 3D structural transition of gold clusters to a smaller size

    Targeting PML-RARα and Oncogenic Signaling Pathways by Chinese Herbal Mixture Tien-Hsien Liquid in Acute Promyelocytic Leukemia NB4 Cells

    Get PDF
    Tien-Hsien Liquid (THL) is a Chinese herbal mixture that has been used worldwide as complementary treatment for cancer patients in the past decade. Recently, THL has been shown to induce apoptosis in various types of solid tumor cells in vitro. However, the underlying molecular mechanisms have not yet been well elucidated. In this study, we explored the effects of THL on acute promyelocytic leukemia (APL) NB4 cells, which could be effectively treated by some traditional Chinese remedies containing arsenic trioxide. The results showed THL could induce G2/M arrest and apoptosis in NB4 cells. Accordingly, the decrease of cyclin A and B1 were observed in THL-treated cells. The THL-induced apoptosis was accompanied with caspase-3 activation and decrease of PML-RARα fusion protein. Moreover, DNA methyltransferase 1 and oncogenic signaling pathways such as Akt/mTOR, Stat3 and ERK were also down-regulated by THL. By using ethyl acetate extraction and silica gel chromatography, an active fraction of THL named as EAS5 was isolated. At about 0.5–1% of the dose of THL, EAS5 appeared to have most of THL-induced multiple molecular targeting effects in NB4 cells. Based on the findings of these multi-targeting effects, THL might be regarding as a complementary and alternative therapeutic agent for refractory APL
    corecore