236 research outputs found

    Frequency dependent core shifts and parameter estimation for the blazar 3C 454.3

    Full text link
    We study the core shift effect in the parsec scale jet of the blazar 3C 454.3 using the 4.8 GHz - 36.8 GHz radio light curves obtained from three decades of continuous monitoring. From a piecewise Gaussian fit to each flare, time lags Δt\Delta t between the observation frequencies Îœ\nu and spectral indices α\alpha based on peak amplitudes AA are determined. From the fit Δt∝Μ1/kr\Delta t \propto \nu^{1/k_r}, kr=1.10±0.18k_r = 1.10 \pm 0.18 indicating equipartition between the magnetic field energy density and the particle energy density. From the fit A∝ΜαA \propto \nu^\alpha, α\alpha is in the range −0.24-0.24 to 1.521.52. A mean magnetic field strength at 1 pc, B1=0.5±0.2B_1 = 0.5 \pm 0.2 G, and at the core, Bcore=46±16B_{\rm core} = 46 \pm 16 mG, are inferred, consistent with previous estimates. The measure of core position offset is ΩrÎœ=6.4±2.8\Omega_{r\nu} = 6.4 \pm 2.8 pc GHz1/kr^{1/k_r} when averaged over all frequency pairs. Based on the statistical trend shown by the measured core radius rcorer_{\rm core} as a function of Îœ\nu, we infer that the synchrotron opacity model may not be valid for all cases. A Fourier periodogram analysis yields power law slopes in the range −1.6-1.6 to −3.5-3.5 describing the power spectral density shape and gives bend timescales in the range 0.52−0.66 0.52 - 0.66~yr. This result, and both positive and negative α\alpha, indicate that the flares originate from multiple shocks in a small region. Important objectives met in our study include: the demonstration of the computational efficiency and statistical basis of the piecewise Gaussian fit; consistency with previously reported results; evidence for the core shift dependence on observation frequency and its utility in jet diagnostics in the region close to the resolving limit of very long baseline interferometry observations.Comment: 12 pages, 11 figures (23 sub-figures), 5 tables. Accepted for publication in MNRA

    The core shift effect in the blazar 3C 454.3

    Full text link
    Opacity-driven shifts of the apparent VLBI core position with frequency (the "core shift" effect) probe physical conditions in the innermost parts of jets in active galactic nuclei. We present the first detailed investigation of this effect in the brightest gamma-ray blazar 3C454.3 using direct measurements from simultaneous 4.6-43 GHz VLBA observations, and a time lag analysis of 4.8-37 GHz lightcurves from the UMRAO, CrAO, and Metsahovi observations in 2007-2009. The results support the standard Konigl model of jet physics in the VLBI core region. The distance of the core from the jet origin r_c(nu), the core size W(nu), and the lightcurve time lag DT(nu) all depend on the observing frequency nu as r_c(nu)~W(nu)~ DT(nu)~nu^-1/k. The obtained range of k=0.6-0.8 is consistent with the synchrotron self-absorption being the dominating opacity mechanism in the jet. The similar frequency dependence of r_c(nu) and W(nu) suggests that the external pressure gradient does not dictate the jet geometry in the cm-band core region. Assuming equipartition, the magnetic field strength scales with distance r as B = 0.4(r/1pc)^-0.8 G. The total kinetic power of electron/positron jet is about 10^44 ergs/s.Comment: Accepted for publication in MNRAS; 10 pages, 6 figure

    A peculiar multi-wavelength flare in the Blazar 3C 454.3

    Full text link
    The blazar 3C454.3 exhibited a strong flare seen in gamma-rays, X-rays, and optical/NIR bands during 3--12 December 2009. Emission in the V and J bands rose more gradually than did the gamma-rays and soft X-rays, though all peaked at nearly the same time. Optical polarization measurements showed dramatic changes during the flare, with a strong anti-correlation between optical flux and degree of polarization (which rose from ~ 3% to ~ 20%) during the declining phase of the flare. The flare was accompanied by large rapid swings in polarization angle of ~ 170 degree. This combination of behaviors appear to be unique. We have cm-band radio data during the same period but they show no correlation with variations at higher frequencies. Such peculiar behavior may be explained using jet models incorporating fully relativistic effects with a dominant source region moving along a helical path or by a shock-in-jet model incorporating three-dimensional radiation transfer if there is a dominant helical magnetic field. We find that spectral energy distributions at different times during the flare can be fit using modified one-zone models where only the magnetic field strength and particle break frequencies and normalizations need change. An optical spectrum taken at nearly the same time provides an estimate for the central black hole mass of ~ 2.3 * 10^9 M_sun. We also consider two weaker flares seen during the ∌200\sim 200 d span over which multi-band data are available. In one of them, the V and J bands appear to lead the Îł\gamma-ray and X-ray bands by a few days; in the other, all variations are simultaneous.Comment: 11 pages, 4 figures, 2 tables; MNRAS in pres

    Optical and Radio Variability of BL Lacertae

    Full text link
    We observed the prototype blazar, BL Lacertae, extensively in optical and radio bands during an active phase in the period 2010--2013 when the source showed several prominent outbursts. We searched for possible correlations and time lags between the optical and radio band flux variations using multifrequency data to learn about the mechanisms producing variability. During an active phase of BL Lacertae, we searched for possible correlations and time lags between multifrequency light curves of several optical and radio bands. We tried to estimate any possible variability timescales and inter-band lags in these bands. We performed optical observations in B, V, R and I bands from seven telescopes in Bulgaria, Georgia, Greece and India and obtained radio data at 36.8, 22.2, 14.5, 8 and 4.8 GHz frequencies from three telescopes in Ukraine, Finland and USA. Significant cross-correlations between optical and radio bands are found in our observations with a delay of cm-fluxes with respect to optical ones of ~250 days. The optical and radio light curves do not show any significant timescales of variability. BL Lacertae showed many optical 'mini-flares' on short time-scales. Variations on longer term timescales are mildly chromatic with superposition of many strong optical outbursts. In radio bands, the amplitude of variability is frequency dependent. Flux variations at higher radio frequencies lead the lower frequencies by days or weeks. The optical variations are consistent with being dominated by a geometric scenario where a region of emitting plasma moves along a helical path in a relativistic jet. The frequency dependence of the variability amplitude supports an origin of the observed variations intrinsic to the source.Comment: 10 pages, 9 figures, Accepted for publication in A&

    Multiwavelength observations of Mkn 501 during the 1997 high state

    Full text link
    During the observation period 1997, the nearby Blazar Mkn 501 showed extremely strong emission and high variability. We examine multiwavelength aspects of this event using radio, optical, soft and hard X-ray and TeV data. We concentrate on the medium-timescale variability of the broadband spectra, averaged over weekly intervals. We confirm the previously found correlation between soft and hard X-ray emission and the emission at TeV energies, while the source shows only minor variability at radio and optical wavelengths. The non-linear correlation between hard X-ray and TeV fluxes is consistent with a simple analytic estimate based on an SSC model in which Klein-Nishina effects are important for the highest-energy electrons in the jet, and flux variations are caused by variations of the electron density and/or the spectral index of the electron injection spectrum. The time-averaged spectra are fitted with a Synchrotron Self-Compton (SSC) dominated leptonic jet model, using the full Klein-Nishina cross section and following the self-consistent evolution of relativistic particles along the jet, accounting for gamma-gamma absorption and pair production within the source as well as due to the intergalactic infrared background radiation. The contribution from external inverse-Compton scattering is tightly constrained by the low maximum EGRET flux and found to be negligible at TeV energies. We find that high levels of the X-ray and TeV fluxes can be explained by a hardening of the energy spectra of electrons injected at the base of the jet, in remarkable contrast to the trend found for gamma-ray flares of the flat-spectrum radio quasar PKS 0528+134.Comment: accepted for publication in ApJ, 31 pages, 11 figure

    Research and Innovation As a Catalyst For Food System Transformation

    Get PDF
    Background Food systems are associated with severe and persistent problems worldwide. Governance approaches aiming to foster sustainable transformation of food systems face several challenges due to the complex nature of food systems. Scope and approach In this commentary we argue that addressing these governance challenges requires the development and adoption of novel research and innovation (R&I) approaches that will provide evidence to inform food system transformation and will serve as catalysts for change. We first elaborate on the complexity of food systems (transformation) and stress the need to move beyond traditional linear R&I approaches to be able to respond to persistent problems that affect food systems. Though integrated transdisciplinary approaches are promising, current R&I systems do not sufficiently support such endeavors. As such, we argue, we need strategies that trigger a double transformation – of food systems and of their R&I systems. Key Findings and Conclusions Seizing the opportunities to transform R&I systems has implications for how research is done – pointing to the need for competence development among researchers, policy makers and society in general – and requires specific governance interventions that stimulate a systemic approach. Such interventions should foster transdisciplinary and transformative research agendas that stimulate portfolios of projects that will reinforce one another, and stimulate innovative experiments to shape conditions for systemic change. In short, a thorough rethinking of the role of R&I as well as how it is funded is a crucial step towards the development of the integrative policies that are necessary to engender systemic change – in the food system and beyond

    Radio variability properties for radio sources

    Get PDF
    In this paper, we used the database of the university of Michigan Radio Astronomy Observatory (UMRAO) at three (4.8 GHz, 8.0 GHZ, and 14.5 GHz) radio frequency to analyze the radio light curves by the power spectral analysis method in search of possible periodicity. The analysis results showed that the radio sources display astrophysically meaningful periodicity ranging from 2.2 to 20.8 years in their light curves at the three frequencies. We also calculated the variability parameters and investigated the correlations between the variability parameter and the flux density. For the variability parameters, we found that the parameters at higher frequency are higher than those in the lower frequency. In addition, the variability parameters of BL Lacertae objects are larger than those of flat-spectrum radio quasars. suggesting that they are more variable than flat spectrum radio quasars.Comment: 28 pages, 6 figures, 3 tables, A&A in pres

    The WEBT Campaign on the Blazar 3C279 in 2006

    Full text link
    The quasar 3C279 was the target of an extensive multiwavelength monitoring campaign from January through April 2006, including an optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we focus on the results of the WEBT campaign. The source exhibited substantial variability of optical flux and spectral shape, with a characteristic time scale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other. In intriguing contrast to other (in particular, BL Lac type) blazars, we find a lag of shorter- behind longer-wavelength variability throughout the RVB ranges, with a time delay increasing with increasing frequency. Spectral hardening during flares appears delayed with respect to a rising optical flux. This, in combination with the very steep IR-optical continuum spectral index of ~ 1.5 - 2.0, may indicate a highly oblique magnetic field configuration near the base of the jet. An alternative explanation through a slow (time scale of several days) acceleration mechanism would require an unusually low magnetic field of < 0.2 G, about an order of magnitude lower than inferred from previous analyses of simultaneous SEDs of 3C279 and other FSRQs with similar properties.Comment: Accepted for publication in Ap
    • 

    corecore