76 research outputs found

    Isolation and properties of genetically defined strains of the methylotrophic yeast Hansenula polymorpha CBS4732

    Get PDF
    Genetically defined strains of the yeast Hansenula polymorpha were constructed froth a clone of H. polymorpha CBS4732 with very low mating and sporulation abilities. Mating, spore viability, and the percentage of four-spore-containing asci were increased to a level at which tetrad analysis was possible. Auxotrophic mutations in 30 genes were isolated and used to construct strains with multiple markers for mapping studies, transformation with plasmid DNA, and mutant screening. Various other types of mutants were isolated and characterized, among them mutants that displayed an altered morphology, methanol-utilization deficient mutants and strains impaired in the biosynthesis of alcohol oxidase and catalase. Also, the mutability of H. polymorpha CBS4732 vs H. polymorpha NCYC495 was compared. The data revealed clear differences in frequencies of appearance and mutational spectra of some mutants isolated. Many of the mutants isolated had good mating abilities, and diploids resulting from their crossing displayed high sporulation frequencies and high spore viability. Most of the markers used revealed normal Mendelian segregation during meiosis. The frequency of tetratype spore formation was lower than in Saccharomyces cerevisiae suggesting a lower frequency of recombination during the second meiotic division. The properties of genetically defined strains of H. polymorpha CBS4732 as well as their advantages for genetics and molecular studies are discussed

    Construction of uricase-overproducing strains of Hansenula polymorpha and its application as biological recognition element in microbial urate biosensor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The detection and quantification of uric acid in human physiological fluids is of great importance in the diagnosis and therapy of patients suffering from a range of disorders associated with altered purine metabolism, most notably gout and hyperuricaemia. The fabrication of cheap and reliable urate-selective amperometric biosensors is a challenging task.</p> <p>Results</p> <p>A urate-selective microbial biosensor was developed using cells of the recombinant thermotolerant methylotrophic yeast <it>Hansenula polymorpha </it>as biorecognition element. The construction of uricase (UOX) producing yeast by over-expression of the uricase gene of <it>H. polymorpha </it>is described. Following a preliminary screening of the transformants with increased UOX activity in permeabilized yeast cells the optimal cultivation conditions for maximal UOX yield namely a 40-fold increase in UOX activity were determined.</p> <p>The UOX producing cells were coupled to horseradish peroxidase and immobilized on graphite electrodes by physical entrapment behind a dialysis membrane. A high urate selectivity with a detection limit of about 8 μM was found.</p> <p>Conclusion</p> <p>A strain of <it>H. polymorpha </it>overproducing UOX was constructed. A cheap urate selective microbial biosensor was developed.</p

    Enhanced heterologous gene expression in diploid cells of methylotrophic yeast Hansenula (Ogataea) polymorpha

    No full text
    The expression of bacterial gusA gene encoding for E. coli enzyme β-glucuronidase in haploid and diploid cells of methylotrophic yeast Hansenula (Ogataea) polymorpha was studied. Haploid strains were transformed with plasmid carrying gusA gene under the control of strong alcohol oxidase (AOX) promoter and several Gus+ transformants were isolated. They were crossed with wild type strains lacking Gus activity. The resulting diploids were sporulated and several meiotic segregants with increased Gus activity were isolated. Some of these segregants were crossed and the corresponding diploid strains were obtained. It was found that Gus activity of diploid strains was twice higher compared to haploids, whereas Gus activity of diploids was increased about six fold compared to those of haploids. Our results can be used as an approach for development of yeast strains with elevated expression of heterologous proteins

    Isolation and properties of genetically defined strains of the methylotrophic yeast Hansenula polymorpha CBS4732

    No full text
    Genetically defined strains of the yeast Hansenula polymorpha were constructed from a clone of H. polymorpha CBS4732 with very low mating and sporulation abilities. Mating, spore viability, and the percentage of four-spore-containing asci were increased to a level at which tetrad analysis was possible. Auxotrophic mutations in 30 genes were isolated and used to construct strains with multiple markers for mapping studies, transformation with plasmid DNA, and mutant screening. Various other types of mutants were isolated and characterized, among them mutants that displayed an altered morphology, methanol-utilization deficient mutants and strains impaired in the biosynthesis of alcohol oxidase and catalase. Also, the mutability of H. polymorpha CBS4732 vs H. polymorpha NCYC495 was compared. The data revealed clear differences in frequencies of appearance and mutational spectra of some mutants isolated. Many of the mutants isolated had good mating abilities, and diploids resulting from their crossing displayed high sporulation frequencies and high spore viability. Most of the markers used revealed normal Mendelian segregation during meiosis. The frequency of tetratype spore formation was lower than in Saccharomyces cerevisiae suggesting a lower frequency of recombination during the second meiotic division. The properties of genetically defined strains of H. polymorpha CBS4732 as well as their advantages for genetics and molecular studies are discussed.

    Two Novel Iso

    No full text
    corecore