37 research outputs found

    Crater formation in gold nanoislands due to mev self-ion irradiation

    Get PDF
    The modification of gold nanoislands, grown on silicon substrates under high-vacuum conditions, by MeV self-ion irradiation has been studied by using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and x-ray reflectivity. Upon irradiation with 1.5MeVAu2+, two types of craters are observed on the Au islands: Empty craters and craters with a central hillock. The contribution of plastic flow, pressure spike, and sputtering to the crater formation during the ion impacts on the gold islands is analyzed. Thermal spike confinement within the gold islands is also proposed to be one of the possible reasons for crater formation in nanoislands

    Results of x-ray mirror round-robin metrology measurements at the APS, ESRF, and SPring-8 optical metrology laboratories

    Full text link
    This paper presents the first series of round-robin metrology measurements of x-ray mirrors organized at the Advanced Photon Source (APS) in the USA, the European Synchrotron Radiation Facility in France, and the Super Photon Ring (SPring-8) (in a collaboration with Osaka University,) in Japan. This work is part of the three institutions' three-way agreement to promote a direct exchange of research information and experience amongst their specialists. The purpose of the metrology round robin is to compare the performance and limitations of the instrumentation used at the optical metrology laboratories of these facilities and to set the basis for establishing guidelines and procedures to accurately perform the measurements. The optics used in the measurements were selected to reflect typical, as well as state of the art, in mirror fabrication. The first series of the round robin measurements focuses on flat and cylindrical mirrors with varying sizes and quality. Three mirrors (two flats and one cylinder) were successively measured using long trace profilers. Although the three facilities' LTPs are of different design, the measurements were found to be in excellent agreement. The maximum discrepancy of the rms slope error values is 0.1 μrad, that of the rms shape error was 3 nm, and they all relate to the measurement of the cylindrical mirror. The next round-robin measurements will deal with elliptical and spherical optics.Lahsen Assoufid, Amparo Rommeveaux, Haruhiko Ohashi, Kazuto Yamauchi, Hidekazu Mimura, Jun Qian, Olivier Hignette, Tetsuya Ishikawa, Christian Morawe, Albert Macrander, Ali Khounsary, and Shunji Goto "Results of x-ray mirror round-robin metrology measurements at the APS, ESRF, and SPring-8 optical metrology laboratories", Proc. SPIE 5921, Advances in Metrology for X-Ray and EUV Optics, 59210J (16 September 2005); https://doi.org/10.1117/12.623209.Optics and Photonics 2005, 2005, San Diego, California, United State

    Hard X-ray nano-focusing with Montel mirror optics

    Get PDF
    a b s t r a c t Kirkpatrick-Baez mirrors in the Montel (or nested) configuration were tested for hard X-ray nanoscale focusing at a third generation synchrotron beamline. In this scheme, two mirrors, mounted side-by-side and perpendicular to each other, provide for a more compact focusing system and a much higher demagnification and flux than the traditional sequential K-B mirror arrangement. They can accept up to a 120 mm  120 mm incident X-ray beam with a long working distance of 40 mm and broad-bandpass of energies up to $ 30 keV. Initial test demonstrated a focal spot of about 150 nm in both horizontal and vertical directions with either polychromatic or monochromatic beam. Montel mirror optics is important and very appealing for achromatic X-ray nanoscale focusing in conventional non-extra-long synchrotron beamlines

    Development of a new generation of optical slope measuring profiler

    Full text link
    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010)

    Contribution a l'etude des sources EBIS et a l'interaction des ions produits par ces sources avec des cibles gazeuses

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : T 79095 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Next-generation materials for future synchrotron and free-electron laser sources

    No full text
    The development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materials issues of components for synchrotron and free-electron laser accelerators are briefly discussed. The articles in this issue expand on these topics

    High-Resolution Scanning Coded-Mask-Based X-ray Multi-Contrast Imaging and Tomography

    No full text
    Near-field X-ray speckle tracking has been used in phase-contrast imaging and tomography as an emerging technique, providing higher contrast images than traditional absorption radiography. Most reported methods use sandpaper or membrane filters as speckle generators and digital image cross-correlation for phase reconstruction, which has either limited resolution or requires a large number of position scanning steps. Recently, we have proposed a novel coded-mask-based multi-contrast imaging (CMMI) technique for single-shot measurement with superior performance in efficiency and resolution compared with other single-shot methods. We present here a scanning CMMI method for the ultimate imaging resolution and phase sensitivity by using a coded mask as a high-contrast speckle generator, the flexible scanning mode, the adaption of advanced maximum-likelihood optimization to scanning data, and the multi-resolution analysis. Scanning CMMI can outperform other speckle-based imaging methods, such as X-ray speckle vector tracking, providing higher quality absorption, phase, and dark-field images with fewer scanning steps. Scanning CMMI is also successfully demonstrated in multi-contrast tomography, showing great potentials in high-resolution full-field imaging applications, such as in vivo biomedical imaging
    corecore