1,400 research outputs found

    Consistency of the jackknife-after-bootstrap variance estimator for the bootstrap quantiles of a studentized statistic

    Full text link
    Efron [J. Roy. Statist. Soc. Ser. B 54 (1992) 83--111] proposed a computationally efficient method, called the jackknife-after-bootstrap, for estimating the variance of a bootstrap estimator for independent data. For dependent data, a version of the jackknife-after-bootstrap method has been recently proposed by Lahiri [Econometric Theory 18 (2002) 79--98]. In this paper it is shown that the jackknife-after-bootstrap estimators of the variance of a bootstrap quantile are consistent for both dependent and independent data. Results from a simulation study are also presented.Comment: Published at http://dx.doi.org/10.1214/009053605000000507 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Resampling methods for spatial regression models under a class of stochastic designs

    Full text link
    In this paper we consider the problem of bootstrapping a class of spatial regression models when the sampling sites are generated by a (possibly nonuniform) stochastic design and are irregularly spaced. It is shown that the natural extension of the existing block bootstrap methods for grid spatial data does not work for irregularly spaced spatial data under nonuniform stochastic designs. A variant of the blocking mechanism is proposed. It is shown that the proposed block bootstrap method provides a valid approximation to the distribution of a class of M-estimators of the spatial regression parameters. Finite sample properties of the method are investigated through a moderately large simulation study and a real data example is given to illustrate the methodology.Comment: Published at http://dx.doi.org/10.1214/009053606000000551 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Developmental stage-specific regulation of the circadian Clock by Temperature in Zebrafish

    Get PDF
    The circadian clock enables animals to adapt their physiology and behaviour in anticipation of the day-night cycle. Light and temperature represent two key environmental timing cues (zeitgebers) able to reset this mechanism and so maintain its synchronization with the environmental cycle. One key challenge is to unravel how the regulation of the clock by zeitgebers matures during early development. The zebrafish is an ideal model for studying circadian clock ontogeny since the process of development occurs ex utero in an optically transparent chorion and many tools are available for genetic analysis. However, the role played by temperature in regulating the clock during zebrafish development is poorly understood. Here, we have established a clock-regulated luciferase reporter transgenic zebrafish line (Tg (−3.1) per1b::luc) to study the effects of temperature on clock entrainment. We reveal that under complete darkness, from an early developmental stage onwards (48 to 72 hpf), exposure to temperature cycles is a prerequisite for the establishment of self-sustaining rhythms of zfper1b, zfaanat2, and zfirbp expression and also for circadian cell cycle rhythms. Furthermore, we show that following the 5–9 somite stage, the expression of zfper1b is regulated by acute temperature shifts
    • …
    corecore