330 research outputs found
State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime
Recently, macroscopic mechanical oscillators have been coaxed into a regime
of quantum behavior, by direct refrigeration [1] or a combination of
refrigeration and laser-like cooling [2, 3]. This exciting result has
encouraged notions that mechanical oscillators may perform useful functions in
the processing of quantum information with superconducting circuits [1, 4-7],
either by serving as a quantum memory for the ephemeral state of a microwave
field or by providing a quantum interface between otherwise incompatible
systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode
of a microwave field to and from a mechanical oscillator has not been
demonstrated owing to the inability to agilely turn on and off the interaction
between microwave electricity and mechanical motion. Here we demonstrate that
the state of an itinerant microwave field can be coherently transferred into,
stored in, and retrieved from a mechanical oscillator with amplitudes at the
single quanta level. Crucially, the time to capture and to retrieve the
microwave state is shorter than the quantum state lifetime of the mechanical
oscillator. In this quantum regime, the mechanical oscillator can both store
and transduce quantum information
The physics of dipolar bosonic quantum gases
This article reviews the recent theoretical and experimental advances in the
study of ultracold gases made of bosonic particles interacting via the
long-range, anisotropic dipole-dipole interaction, in addition to the
short-range and isotropic contact interaction usually at work in ultracold
gases. The specific properties emerging from the dipolar interaction are
emphasized, from the mean-field regime valid for dilute Bose-Einstein
condensates, to the strongly correlated regimes reached for dipolar bosons in
optical lattices.Comment: Review article, 71 pages, 35 figures, 350 references. Submitted to
Reports on Progress in Physic
Bose-Hubbard model with occupation dependent parameters
We study the ground-state properties of ultracold bosons in an optical
lattice in the regime of strong interactions. The system is described by a
non-standard Bose-Hubbard model with both occupation-dependent tunneling and
on-site interaction. We find that for sufficiently strong coupling the system
features a phase-transition from a Mott insulator with one particle per site to
a superfluid of spatially extended particle pairs living on top of the Mott
background -- instead of the usual transition to a superfluid of single
particles/holes. Increasing the interaction further, a superfluid of particle
pairs localized on a single site (rather than being extended) on top of the
Mott background appears. This happens at the same interaction strength where
the Mott-insulator phase with 2 particles per site is destroyed completely by
particle-hole fluctuations for arbitrarily small tunneling. In another regime,
characterized by weak interaction, but high occupation numbers, we observe a
dynamical instability in the superfluid excitation spectrum. The new ground
state is a superfluid, forming a 2D slab, localized along one spatial direction
that is spontaneously chosen.Comment: 16 pages, 4 figure
Simulation of Quantum Magnetism in Mixed Spin Systems with Impurity Doped Ion Crystal
We propose the realization of linear crystals of cold ions which contain
different atomic species for investigating quantum phase transitions and
frustration effects in spin system beyond the commonly discussed case of
. Mutual spin-spin interactions between ions can be tailored via the
Zeeman effect by applying oscillating magnetic fields with strong gradients.
Further, collective vibrational modes in the mixed ion crystal can be used to
enhance and to vary the strength of spin-spin interactions and even to switch
those forces from a ferro- to an antiferromagnetic character. We consider the
behavior of the effective spin-spin couplings in an ion crystal of spin-1/2
ions doped with high magnetic moment ions with spin S=3. We analyze the ground
state phase diagram and find regions with different spin orders including
ferrimagnetic states. In the most simple non-trivial example we deal with a
linear Ca, Mn, Ca crystal with spins of \{1/2,3,1/2}. To
show the feasibility with current state-of-the-art experiments, we discuss how
quantum phases might be detected using a collective Stern-Gerlach effect of the
ion crystal and high resolution spectroscopy. Here, the state-dependent
laser-induced fluorescence of the indicator spin-1/2 ion, of species
Ca, reveals also the spin state of the simulator spin-3 ions,
Mn as this does not possess suitable levels for optical excitation
and detection.Comment: 15 pages, 5 figure
The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules
Beams of atoms and molecules are stalwart tools for spectroscopy and studies
of collisional processes. The supersonic expansion technique can create cold
beams of many species of atoms and molecules. However, the resulting beam is
typically moving at a speed of 300-600 m/s in the lab frame, and for a large
class of species has insufficient flux (i.e. brightness) for important
applications. In contrast, buffer gas beams can be a superior method in many
cases, producing cold and relatively slow molecules in the lab frame with high
brightness and great versatility. There are basic differences between
supersonic and buffer gas cooled beams regarding particular technological
advantages and constraints. At present, it is clear that not all of the
possible variations on the buffer gas method have been studied. In this review,
we will present a survey of the current state of the art in buffer gas beams,
and explore some of the possible future directions that these new methods might
take
Dark solitons in atomic Bose-Einstein condensates: from theory to experiments
This review paper presents an overview of the theoretical and experimental
progress on the study of matter-wave dark solitons in atomic Bose-Einstein
condensates. Upon introducing the general framework, we discuss the statics and
dynamics of single and multiple matter-wave dark solitons in the quasi
one-dimensional setting, in higher-dimensional settings, as well as in the
dimensionality crossover regime. Special attention is paid to the connection
between theoretical results, obtained by various analytical approaches, and
relevant experimental observations.Comment: 82 pages, 13 figures. To appear in J. Phys. A: Math. Theor
Condensed Matter Theory of Dipolar Quantum Gases
Recent experimental breakthroughs in trapping, cooling and controlling
ultracold gases of polar molecules, magnetic and Rydberg atoms have paved the
way toward the investigation of highly tunable quantum systems, where
anisotropic, long-range dipolar interactions play a prominent role at the
many-body level. In this article we review recent theoretical studies
concerning the physics of such systems. Starting from a general discussion on
interaction design techniques and microscopic Hamiltonians, we provide a
summary of recent work focused on many-body properties of dipolar systems,
including: weakly interacting Bose gases, weakly interacting Fermi gases,
multilayer systems, strongly interacting dipolar gases and dipolar gases in 1D
and quasi-1D geometries. Within each of these topics, purely dipolar effects
and connections with experimental realizations are emphasized.Comment: Review article; submitted 09/06/2011. 158 pages, 52 figures. This
document is the unedited author's version of a Submitted Work that was
subsequently accepted for publication in Chemical Reviews, copyright American
Chemical Society after peer review. To access the final edited and published
work, a link will be provided soo
Recommended from our members
Suppression of Tearing Modes by Means of Localized Electron Cyclotron Current Drive in the Diii-D Tokamak
The onset of tearing modes and the resulting negative effects on plasma performance set significant limits on the operational domain of tokamaks. Modes with toroidal mode number (n) larger than two cause only a minor reduction in energy confinement (<10%). Modes which have a dominant poloidal mode number (m) of three and n=2 lead to a significant reduction in confinement (<30%) at fixed power. The plasma pressure {beta} (normalized to the magnetic field pressure) can be raised further, albeit with very small incremental confinement. Pushing to higher {beta} often destabilizes the m=2/n=1 tearing mode which can lock to the wall and lead to a complete and rapid disruption of the plasma with potentially serious consequences for the tokamak. The {beta} values at which these modes usually appear in conventional tokamak discharges are well below the limits calculated using ideal MHD theory. Therefore, the tearing modes can set effective upper limits on energy confinement and pressure. Significant progress has been made in stabilizing these modes by local current generation using electron cyclotron waves. The tearing mode is essentially a deficit in current flowing helically, resonant with the spatial structure of the local magnetic field. This forms an ''island'' where the magnetic flux is no longer monotonic. It was predicted theoretically [1,2] that replacement of this ''missing'' current would return the plasma to the state prior to the instability. Experiments on the ASDEX-Upgrade [3], JT-60U [4], and DIII-D [5] tokamaks have demonstrated stabilization of m=3/n=2 modes using electron cyclotron current drive (ECCD) to replace the current in the island. Following these initial experiments, recent work on the DIII-D tokamak has demonstrated two significant advances in application of this technique--extending the operational domain stable to m=3/n=2 modes to higher {beta} and the first suppression of the more dangerous m=2/n=1 mode
NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional 13C Solid-State NMR and ab Initio Chemical Shift Calculations
Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D C-13 double-quantum/single-quantum correlation SSNMR spectrum of C-13-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf-Klinowski model (Lerf, A. et al. Phys. Chem. B 1998, 102, 4477); this model is composed of interconnected sp(2), 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater. 2006, 18, 2740). C-13 chemical shift anisotropy (CSA) patterns measured by a 2D C-13 CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems
- …