2,122 research outputs found
Galactic Center Radio Constraints on Gamma-Ray Lines from Dark Matter Annihilation
Recent evidence for one or more gamma-ray lines at ~ 130 GeV in the Fermi-LAT
data from the Galactic Center has been interpreted as a hint for dark matter
annihilation to Z{\gamma} or H{\gamma} with an annihilation cross section,
~ 10^{-27} cm^3 s^{-1} . We test this hypothesis by comparing
synchrotron fluxes due to the electrons and positrons from the decay of the Z
or the H boson only in the Galactic Center against radio data from the same
region in the Galactic Center. We find that the radio data from single dish
telescopes marginally constrain this interpretation of the claimed gamma lines
for a contracted NFW profile. Already-operational radio telescopes such as LWA,
VLA-Low and LOFAR, and future radio telescopes like SKA, which are sensitive to
annihilation cross sections as small as 10^{-28} cm^3 s^{-1}, can confirm or
rule out this scenario very soon. We discuss the assumptions on the dark matter
profile, magnetic fields, and background radiation density profiles, and show
that the constraints are relatively robust for any reasonable assumptions.
Independent of the above said recent developments, we emphasize that our radio
constraints apply to all models where dark matter annihilates to Z{\gamma} or
H{\gamma}.Comment: v3: 18 pages, 7 figures. Minor changes. Published in Phys. Rev.
Using Absorption Imaging to Study Ion Dynamics in an Ultracold Neutral Plasma
We report optical absorption imaging of ultracold neutral plasmas.Images are
used to measure the ion absorption spectrum, which is Doppler-broadened.
Through the spectral width, we monitor ion equilibration in the first 250ns
after plasma formation. The equilibration leaves ions on the border between the
weakly coupled gaseous and strongly coupled liquid states. On a longer
timescale of microseconds, we observe radial acceleration of ions resulting
from pressure exerted by the trapped electron gas.Comment: 4 pages, 4 figure
ITPK1 is an InsP6/ADP phosphotransferase that controls phosphate signaling in Arabidopsis
In plants, phosphate (Pi) homeostasis is regulated by the interaction of PHR transcription factors with stand-alone SPX proteins, which act as sensors for inositol pyrophosphates. Here, we combined different methods to obtain a comprehensive picture of how inositol (pyro)phosphate metabolism is regulated by Pi and dependent on the inositol phosphate kinase ITPK1. We found that inositol pyrophosphates are more responsive to Pi than lower inositol phosphates, a response conserved across kingdoms. With CE-ESI-MS we could separate different InsP7 isomers in Arabidopsis and rice, and identify 4/6-InsP7 and a PP-InsP4 isomer hitherto not reported in plants. We found that the inositol pyrophosphates 1/3-InsP7, 5-InsP7 and InsP8 increase severalfold in shoots after Pi resupply and that tissue-specific accumulation of inositol pyrophosphates relies on ITPK1 activities and MRP5-dependent InsP6 compartmentalization. Notably, ITPK1 is critical for Pi-dependent 5-InsP7 and InsP8 synthesis in planta and its activity regulates Pi starvation responses in a PHR-dependent manner. Furthermore, we demonstrate that ITPK1-mediated conversion of InsP6 to 5-InsP7 requires high ATP concentrations and that Arabidopsis ITPK1 has an ADP phosphotransferase activity to dephosphorylate specifically 5-InsP7 under low ATP. Collectively, our study provides deeper insights into Pi-dependent changes in nutritional and energetic states with the synthesis of regulatory inositol pyrophosphates
Recommended from our members
Solubilization and biodegradation of hydrophobic organic compounds in soil/aqueous systems with nonionic surfactants
Nonionic surfactants may strongly interact with hydrophobic organic compounds (HOCs), soil, and microorganisms in soil/aqueous systems. These interactions affect the potential for surfactant-facilitated HOC transport in soil and groundwater systems, and the feasibility of engineered surfactant cleanup of contaminated sites (McCarthy and Wober, 1991). At sufficiently high bulk liquid concentrations at 25 C, most nonionic surfactants form regular micelles in single-phase solutions, whereas certain surfactants, such as C{sub 12}E{sub 4}, may form bilayer lamellae or other types of aggregates in more complex two-phase solutions. The critical concentrations for the onset of micelle and aggregate formation are termed the critical micelle concentration (CMC) and the critical aggregation concentration (CAC), respectively. Important changes occur in surfactant sorption, surfactant solubilization of HOCs, and microbial mineralization of HOCs in the presence of nonionic surfactants at or near these critical surfactant concentrations
Absorption Imaging and Spectroscopy of Ultracold Neutral Plasmas
Absorption imaging and spectroscopy can probe the dynamics of an ultracold
neutral plasma during the first few microseconds after its creation.
Quantitative analysis of the data, however, is complicated by the inhomogeneous
density distribution, expansion of the plasma, and possible lack of global
thermal equilibrium for the ions. In this article we describe methods for
addressing these issues. Using simple assumptions about the underlying
temperature distribution and ion motion, the Doppler-broadened absorption
spectrum obtained from plasma images can be related to the average temperature
in the plasma.Comment: 14 pages, 8 figure
Self-similarity and power-like tails in nonconservative kinetic models
In this paper, we discuss the large--time behavior of solution of a simple
kinetic model of Boltzmann--Maxwell type, such that the temperature is time
decreasing and/or time increasing. We show that, under the combined effects of
the nonlinearity and of the time--monotonicity of the temperature, the kinetic
model has non trivial quasi-stationary states with power law tails. In order to
do this we consider a suitable asymptotic limit of the model yielding a
Fokker-Planck equation for the distribution. The same idea is applied to
investigate the large-time behavior of an elementary kinetic model of economy
involving both exchanges between agents and increasing and/or decreasing of the
mean wealth. In this last case, the large-time behavior of the solution shows a
Pareto power law tail. Numerical results confirm the previous analysis
Hierarchically Porous Gd3+-Doped CeO2 Nanostructures for the Remarkable Enhancement of Optical and Magnetic Properties
Rare earth ion-doped CeO2 has attracted more and more attention because of its special electrical, optical, magnetic, or catalytic properties. In this paper, a facile electrochemical deposition route was reported for the direct growth of the porous Gd-doped CeO2. The formation process of Gd-doped CeO2 composites was investigated. The obtained deposits were characterized by SEM, EDS, XRD, and XPS. The porous Gd3+- doped CeO2 (10 at% Gd) displays a typical type I adsorption isotherm and yields a large specific surface area of 135 m2/g. As Gd3+ ions were doped into CeO2 lattice, the absorption spectrum of Gd3+-doped CeO2 nanocrystals exhibited a red shift compared with porous CeO2 nanocrystals and bulk CeO2, and the luminescence of Gd3+-doped CeO2 deposits was remarkably enhanced due to the presence of more oxygen vacancies. In addition, the strong magnetic properties of Gd-doped CeO2 (10 at% Gd) were observed, which may be caused by Gd3+ ions or more oxygen defects in deposits. In addition, the catalytic activity of porous Gd-doped CeO2 toward CO oxidation was studied
Solution of the relativistic Dirac-Hulthen problem
The one-particle three-dimensional Dirac equation with spherical symmetry is
solved for the Hulthen potential. The s-wave relativistic energy spectrum and
two-component spinor wavefunctions are obtained analytically. Conforming to the
standard feature of the relativistic problem, the solution space splits into
two distinct subspaces depending on the sign of a fundamental parameter in the
problem. Unique and interesting properties of the energy spectrum are pointed
out and illustrated graphically for several values of the physical parameters.
The square integrable two-component wavefunctions are written in terms of the
Jacobi polynomials. The nonrelativistic limit reproduces the well-known
nonrelativistic energy spectrum and results in Schrodinger equation with a
"generalized" three-parameter Hulthen potential, which is the sum of the
original Hulthen potential and its square.Comment: 13 pages, 3 color figure
Preliminary genetic evidence of two different populations of Opisthorchis viverrini in Lao PDR
Opisthorchis viverrini is a major public health concern in Southeast Asia. Various reports have suggested that this parasite may represent a species complex, with genetic structure in the region perhaps being dictated by geographical factors and different species of intermediate hosts. We used four microsatellite loci to analyze O. viverrini adult worms originating from six species of cyprinid fish in Thailand and Lao PDR. Two distinct O. viverrini populations were observed. In Ban Phai, Thailand, only one subgroup occurred, hosted by two different fish species. Both subgroups occurred in fish from That Luang, Lao PDR, but were represented to very different degrees among the fish hosts there. Our data suggest that, although geographical separation is more important than fish host specificity in influencing genetic structure, it is possible that two species of Opisthorchis, with little interbreeding, are present near Vientiane in Lao PDR
- …