38 research outputs found

    Maze Solving Using Fatty Acid Chemistry

    Get PDF
    This study demonstrates that the Marangoni flow in a channel network can solve maze problems such as exploring and visualizing the shortest path and finding all possible solutions in a parallel fashion. The Marangoni flow is generated by the pH gradient in a maze filled with an alkaline solution of a fatty acid by introducing a hydrogel block soaked with an acid at the exit. The pH gradient changes the protonation rate of fatty acid molecules, which translates into the surface tension gradient at the liquid–air interface through the maze. Fluid flow maintained by the surface tension gradient (Marangoni flow) can drag water-soluble dye particles toward low pH (exit) at the liquid–air interface. Dye particles placed at the entrance of the maze dissolve during this motion, thus exhibiting and finding the shortest path and all possible paths in a maze

    Application of a chemical clock in material design: chemically programmed synthesis of zeolitic imidazole framework-8

    No full text
    Here we show a time-programmed and autonomous synthesis of zeolitic imidazole framework-8 (ZIF-8) using a methylene glycol-sulfite clock reaction. The induction period of the driving clock reaction, thus, the appearance of the ZIF-8 can be adjusted by the initial concentration of one reagent of the chemical clock. The autonomously synthesized ZIF-8 showed excellent morphology and crystallinity
    corecore