7 research outputs found

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4

    No full text
    Poly(A) binding protein (PABP) binds mRNA poly(A) tails and affects mRNA stability and translation. We show here that there is little free PABP in NIH3T3 cells, with the vast majority complexed with RNA. We found that PABP in NIH3T3 cytoplasmic lysates and recombinant human PABP can bind to AU-rich RNA with high affinity. Human PABP bound an AU-rich RNA with Kd in the nm range, which was only sixfold weaker than the affinity for oligo(A) RNA. Truncated PABP containing RNA recognition motif domains 3 and 4 retained binding to both AU-rich and oligo(A) RNA, whereas a truncated PABP containing RNA recognition motif domains 1 and 2 was highly selective for oligo(A) RNA. The inducible PABP, iPABP, was found to be even less discriminating than PABP in RNA binding, with affinities for AU-rich and oligo(A) RNAs differing by only twofold. These data suggest that iPABP and PABP may in some situations interact with other RNA regions in addition to the poly(A) tail

    Hypoxia-inducible Factor-1α mRNA Contains an Internal Ribosome Entry Site That Allows Efficient Translation during Normoxia and Hypoxia

    No full text
    HIF-1α is the regulated subunit of the HIF-1 transcription factor, which induces transcription of a number of genes involved in the cellular response to hypoxia. The HIF-1α protein is rapidly degraded in cells supplied with adequate oxygen but is stabilized in hypoxic cells. Using polysome profile analysis, we found that translation of HIF-1α mRNA in NIH3T3 cells is spared the general reduction in translation rate that occurs during hypoxia. To assess whether the 5′UTR of the HIF-1α mRNA contains an internal ribosome entry site (IRES), we constructed a dicistronic reporter with the HIF-1α 5′UTR inserted between two reporter coding regions. We found that the HIF-1α 5′UTR promoted translation of the downstream reporter, indicating the presence of an IRES. The IRES had activity comparable to that of the well-characterized c-myc IRES. IRES activity was not affected by hypoxic conditions that caused a reduction in cap-dependent translation, and IRES activity was less affected by serum-starvation than was cap-dependent translation. These data indicate that the presence of an IRES in the HIF-1α 5′UTR allows translation to be maintained under conditions that are inhibitory to cap-dependent translation

    Hypoxic Regulation of Vascular Endothelial Growth Factor mRNA Stability Requires the Cooperation of Multiple RNA Elements

    No full text
    Vascular endothelial growth factor (VEGF) is a key regulator of developmental, physiological, and tumor angiogenesis. Upregulation of VEGF expression by hypoxia appears to be a critical step in the neovascularization of solid cancers. The VEGF mRNA is intrinsically labile, but in response to hypoxia the mRNA is stabilized. We have systematically analyzed the regions in the VEGF mRNA that are responsible for its lability under normoxic conditions and for stabilization in response to hypoxia. We find that the VEGF mRNA not only contains destabilizing elements in its 3′ untranslated region (3′UTR), but also contains destabilizing elements in the 5′UTR and coding region. Each region can independently promote mRNA degradation, and together they act additively to effect rapid degradation under normoxic conditions. Stabilization of the mRNA in response to hypoxia is completely dependent on the cooperation of elements in each of the 5′UTR, coding region, and 3′UTR. Combinations of any of two of these three regions were completely ineffective in responding to hypoxia, whereas combining all three regions allowed recapitulation of the hypoxic stabilization seen with the endogenous VEGF mRNA. We conclude that multiple regions in the VEGF mRNA cooperate both to ensure the rapid degradation of the mRNA under normoxic conditions and to allow stabilization of the mRNA in response to hypoxia. Our findings highlight the complexity of VEGF gene expression and also reveal a mechanism of gene regulation that could become the target for strategies of therapeutic intervention

    The RNA Binding Protein HuR: a Promising Drug Target for Anticancer Therapy

    No full text
    corecore