6 research outputs found

    Heritability estimates of the novel trait 'suppressed in ovo virus infection' in honey bees (Apis mellifera)

    Get PDF
    Honey bees are under pressure due to abnormal high colony death rates, especially during the winter. The infestation by the Varroa destructor mite and the viruses that this ectoparasite transmits are generally considered as the bees' most important biological threats. Almost all efforts to remedy this dual infection have so far focused on the control of the Varroa mite alone and not on the viruses it transmits. In the present study, the sanitary control of breeding queens was conducted on eggs taken from drone brood for 4 consecutive years (2015-2018). The screening was performed on the sideline of an ongoing breeding program, which allowed us to estimate the heritabilities of the virus status of the eggs. We used the term 'suppressed in ovo virus infection' (SOV) for this novel trait and found moderate heritabilities for the presence of several viruses simultaneously and for the presence of single viral species. Colonies that expressed the SOV trait seemed to be more resilient to virus infections as a whole with fewer and less severe Deformed wing virus infections in most developmental stages, especially in the male caste. The implementation of this novel trait into breeding programs is recommended

    Genome-wide analysis of alternative reproductive phenotypes in honeybee workers

    No full text
    A defining feature of social insects is the reproductive division of labour, in which workers usually forego all reproduction to help their mother queen to reproduce. However, little is known about the molecular basis of this spectacular form of altruism. Here, we compared gene expression patterns between nonreproductive, altruistic workers and reproductive, non-altruistic workers in queenless honeybee colonies using a whole-genome microarray analysis. Our results demonstrate massive differences in gene expression patterns between these two sets of workers, with a total of 1292 genes being differentially expressed. In nonreproductive workers, genes associated with energy metabolism and respiration, flight and foraging behaviour, detection of visible light, flight and heart muscle contraction and synaptic transmission were overexpressed relative to reproductive workers. This implies they probably had a higher whole-body energy metabolism and activity rate and were most likely actively foraging, whereas same-aged reproductive workers were not. This pattern is predicted from evolutionary theory, given that reproductive workers should be less willing to compromise their reproductive futures by carrying out high-risk tasks such as foraging or other energetically expensive tasks. By contrast, reproductive workers mainly overexpressed oogenesis-related genes compared to nonreproductive ones. With respect to key switches for ovary activation, several genes involved in steroid biosynthesis were upregulated in reproductive workers, as well as genes known to respond to queen and brood pheromones, genes involved in TOR and insulin signalling pathways and genes located within quantitative trait loci associated with reproductive capacity in honeybees. Overall, our results provide unique insight into the molecular mechanisms underlying alternative reproductive phenotypes in honeybee workers

    Pyrethroid target-site resistance mutations in populations of the honey bee parasite Varroa destructor (Acari: Varroidae) from Flanders, Belgium

    No full text
    The honey bee ectoparasite Varroa destructor is considered the major threat to apiculture, as untreated colonies of Apis mellifera usually collapse within a few years. In order to control this mite, many beekeepers rely on a limited number of approved synthetic acaricides, including the pyrethroids tau-fluvalinate and flumethrin. Due to the intensive use of these products, resistance is now commonplace in many beekeeping regions across the world. In the present study, the occurrence of amino acid substitutions at residue L925 of the voltage-gate sodium channel-the pyrethroid target site-was studied in Varroa populations collected throughout Flanders, Belgium. Dose-response bioassays supported the involvement of the frequently observed L925V substitution in flumethrin resistance, resulting in a 12.64-fold increase of the LC50 in a Varroa population mostly consisting of homozygous 925 V/V mites. With the presence of L925 substitutions in about four out of 10 screened apiaries, the use of pyrethroid-based varroacides in Flanders, including the recently released PolyVar (R) Yellow, should be carefully considered
    corecore