88 research outputs found

    Automated high-level movie segmentation for advanced video-retrieval systems

    Full text link

    Secure equality testing protocols in the two-party setting

    Get PDF
    Protocols for securely testing the equality of two encrypted integers are common building blocks for a number of proposals in the literature that aim for privacy preservation. Being used repeatedly in many cryptographic protocols, designing efficient equality testing protocols is important in terms of computation and communication overhead. In this work, we consider a scenario with two parties where party A has two integers encrypted using an additively homomorphic scheme and party B has the decryption key. Party A would like to obtain an encrypted bit that shows whether the integers are equal or not but nothing more. We propose three secure equality testing protocols, which are more efficient in terms of communication, computation or both compared to the existing work. To support our claims, we present experimental results, which show that our protocols achieve up to 99% computation-wise improvement compared to the state-of-the-art protocols in a fair experimental set-up

    Iterative methods for image deblurring

    Full text link

    Watermarking digital image and video data. A state-of-the-art overview

    Full text link

    Correction of intensity flicker in old film sequences

    Full text link

    Iteratieve identificatie en restoratie van beelden

    No full text
    Electrical Engineering, Mathematics and Computer Scienc

    Image and video compression

    No full text

    Distributed Content Based Video Identification in Peer-to-Peer Networks: Requirements and Solutions

    No full text
    In this paper, we first discuss the essential requirements for a fingerprint (perceptual hash)-based distributed video identification system in peer-to-peer (P2P) networks in comparison with traditional central database implementations of fingerprints. This discussion reveals that first, fingerprint sizes of existing video fingerprint methods are not compatible with the cache sizes of current P2P clients; second, fingerprint extraction durations during a query are not at tolerable levels for a user in the network; third, the repetitive patterns in the extracted fingerprints avoid the uniform distribution of storage and traffic load among the peers; and finally, the existing methods do not provide a solution to synchronize the fingerprint extraction from the shared video and queried video. In order to solve the mentioned requirements, we propose a baseline method using only the difference of video framemeans, which decreases the fingerprint sizes to typical cache sizes, by increasing the granularity levels from seconds to minutes. We then develop a novel algorithm which utilizes reference points on one-dimensional frame mean sequence for the synchronization of fingerprint extraction. This algorithm is extended with a hierarchical decoding approach based on Gaussian scales, which only decodes a subset of video frames without needing a full decoding. Finally, an analysis on the effect of design parameters to the fingerprint probability distribution is performed to avoid repetitive patterns. Our ultimate solution reduces the fingerprint sizes into kilobytes, extraction time to seconds, and search duration into milliseconds, and achieves about 90% detection rates with 1-4 min granularities, while enabling a fair distribution of storage load among the peers at the same time

    Image and video compression

    No full text
    • …
    corecore