11 research outputs found

    Source Reconstruction of Brain Potentials Using Bayesian Model Averaging to Analyze Face Intra-Domain vs. Face-Occupation Cross-Domain Processing

    No full text
    We investigated the neural correlates of the access to and retrieval of face structure information in contrast to those concerning the access to and retrieval of person-related verbal information, triggered by faces. We experimentally induced stimulus familiarity via a systematic learning procedure including faces with and without associated verbal information. Then, we recorded event-related potentials (ERPs) in both intra-domain (face-feature) and cross-domain (face-occupation) matching tasks while N400-like responses were elicited by incorrect eyes-eyebrows completions and occupations, respectively. A novel Bayesian source reconstruction approach plus conjunction analysis of group effects revealed that in both cases the generated N170s were of similar amplitude but had different neural origin. Thus, whereas the N170 of faces was associated predominantly to right fusiform and occipital regions (the so-called “Fusiform Face Area”, “FFA” and “Occipital Face Area”, “OFA”, respectively), the N170 of occupations was associated to a bilateral very posterior activity, suggestive of basic perceptual processes. Importantly, the right-sided perceptual P200 and the face-related N250 were evoked exclusively in the intra-domain task, with sources in OFA and extensively in the fusiform region, respectively. Regarding later latencies, the intra-domain N400 seemed to be generated in right posterior brain regions encompassing mainly OFA and, to some extent, the FFA, likely reflecting neural operations triggered by structural incongruities. In turn, the cross-domain N400 was related to more anterior left-sided fusiform and temporal inferior sources, paralleling those described previously for the classic verbal N400. These results support the existence of differentiated neural streams for face structure and person-related verbal processing triggered by faces, which can be activated differentially according to specific task demands

    Encoding of natural timbre dimensions in human auditory cortex

    No full text
    Timbre, or sound quality, is a crucial but poorly understood dimension of auditory perception that is important in describing speech, music, and environmental sounds. The present study investigates the cortical representation of different timbral dimensions. Encoding models have typically incorporated the physical characteristics of sounds as features when attempting to understand their neural representation with functional MRI. Here we test an encoding model that is based on five subjectively derived dimensions of timbre to predict cortical responses to natural orchestral sounds. Results show that this timbre model can outperform other models based on spectral characteristics, and can perform as well as a complex joint spectrotemporal modulation model. In cortical regions at the medial border of Heschl's gyrus, bilaterally, and regions at its posterior adjacency in the right hemisphere, the timbre model outperforms even the complex joint spectrotemporal modulation model. These findings suggest that the responses of cortical neuronal populations in auditory cortex may reflect the encoding of perceptual timbre dimensions

    El valor reforzador de las caras de personas queridas: un estudio de resonancia magnética funcional

    No full text
    We have known since decades about the positive influence of social support and positive emotions on health. Different hypothesis have been made in order to understand the relationship between these factors and physiological and psychological indexes of health and wellbeing. One of these hypothesis suggest that secure, caring and loving environments act as safety cues that activates the reward system and inhibits defensive reactions. Previous studies from our lab have shown that viewing loved familiar faces activates the appetitive motivational system and inhibits defensive responses. In these study we compared central activation during the passive viewing of loved familiar faces with the activation associated with other highly rewarding stimuli (attractive faces). Our results show that loved familiar faces provoked a higher activation of the brain reward system, e.g. the medial orbitofrontal cortex

    Reward value of loved familiar faces: an FMRI study

    No full text
    Desde hace décadas se conoce la influencia beneficiosa que tanto el apoyo social como de las emociones positivas ejercen sobre la salud. Diferentes hipótesis se han postulado acerca de cómo estos factores influyen sobre diferentes índices fisiológicos y psicológicos de bienestar y salud. Una de la hipótesis planteadas sugiere que los entornos seguros, cálidos y cariñosos actúan como señales de seguridad activando el sistema motivacional apetitivo e inhibiendo el sistema defensivo. Un estudio previo en nuestro laboratorio ha mostrado que la visualización de caras de personas familiares queridas activa el sistema motivacional apetitivo e inhibe respuestas defensivas. En este estudio quisimos comparar la activación central ante caras queridas con la activación provocada por otro tipo de caras altamente gratificantes (caras atractivas). Nuestros resultados señalan que las caras familiares queridas activaron con mayor intensidad algunas de las áreas asociadas con el sistema de recompensa, en concreto la corteza orbito-frontal medial

    Mother adversity and co-residence time impact mother–child similarity in genome-wide and gene-specific methylation profiles

    No full text
    Abstract Background The effects of adverse life events on physical and psychological health, with DNA methylation (DNAm) as a critical underlying mechanism, have been extensively studied. However, the epigenetic resemblance between mother and child in the context of neglectful caregiving, and whether it may be shaped by the emotional impact of maternal stressful events and the duration of co-residence (indexed by child age), remains unknown. The present study examined mother–child similarity in methylation profiles, considering the potential effect of mother adversity, mother empathy, neglect-control group, child age (an index of years of mother–child co-residence), and mother age. Using Illumina Epic arrays, we quantified DNAm in 115 mother–child saliva samples. We obtained a methylation similarity index by computing correlation coefficients between methylation profiles within dyads, for the entire epigenome, and five specific genes related to stress and empathy: NR3C1, FKPB5, OXTR, SCL6A4, and BDNF. Results The methylation profiles of the mother–child familial pairs significantly correlated as compared to mother–child random pairs for the entire epigenome and NR3C1, FKBP5, OXTR and BDNF genes. Next, multiple linear regression models observed associations of mother adversity, child age, and neglect-control group on mother–child methylation similarity, only significant in mother–child familial pairs, after correcting for multiple comparisons. Higher mother adversity was associated with lower mother–child methylation similarity for the epigenome-wide analysis, for the BDNF gene, and in the neglect-control group for the OXTR gene. In turn, being an older child (longer co-residence) was associated with higher mother–child methylation similarity. Conclusions Mother adversity and co-residence time are modulating factors in the intergenerational methylation process that offer a window into development-dependent adaptations that can be affected by both hereditary and environmental factors, significantly observed only in biological dyads. A twofold implication for child well-being emerges, one is positive in that children of mothers exposed to life adversity or neglect did not necessarily inherit their methylation patterns. The other is concerning due to the influence of time spent living together, which affects similarity with the mother and potentially increases the risk of inheriting an epigenetic profile associated with future dysfunctional parenting patterns. This underscores the importance of the 'the earlier, the better' recommendation by the Child Protection System, which is not always followed

    The shared mother-child epigenetic signature of neglect is related to maternal adverse events

    No full text
    Studies of DNA methylation have revealed the biological mechanisms by which life adversity confers risk for later physical and mental health problems. What remains unknown is the “biologically embedding” of maternal adverse experiences resulting in maladaptive parenting and whether these epigenetic effects are transmitted to the next generation. This study focuses on neglectful mothering indexed by a severe disregard for the basic and psychological needs of the child. Using the Illumina Human Methylation EPIC BeadChip in saliva samples, we identified genes with differentially methylated regions (DMRs) in those mothers with (n = 51), versus those without (n = 87), neglectful behavior that present similar DMRs patterns in their children being neglected versus non-neglected (n = 40 vs. 75). Mothers reported the emotional intensity of adverse life events. After covariate adjustment and multiple testing corrections, we identified 69 DMRs in the mother epigenome and 42 DMRs in the child epigenome that were simultaneously above the α = 0.01 threshold. The common set of nine DMRs contained genes related to childhood adversity, neonatal and infant diabetes, child neurobehavioral development and other health problems such as obesity, hypertension, cancer, posttraumatic stress, and the Alzheimer’s disease; four of the genes were associated with maternal life adversity. Identifying a shared epigenetic signature of neglect linked to maternal life adversity is an essential step in breaking the intergenerational transmission of one of the most common forms of childhood maltreatment

    Sensation-to-cognition cortical streams in attention-deficit/hyperactivity disorder

    No full text
    We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120 children with ADHD and 120 age-matched typically developing children (TDC). Starting in unimodal primary cortex-visual, auditory, and somatosensory-we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link-step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention-regulatory areas is reduced. Third, at subsequent link-step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication-naĂŻve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD

    Estimating brain functional connectivity with sparse multivariate autoregression

    No full text
    There is much current interest in identifying the anatomical and functional circuits that are the basis of the brain's computations, with hope that functional neuroimaging techniques will allow the in vivo study of these neural processes through the statistical analysis of the time-series they produce. Ideally, the use of techniques such as multivariate autoregressive (MAR) modelling should allow the identification of effective connectivity by combining graphical modelling methods with the concept of Granger causality. Unfortunately, current time-series methods perform well only for the case that the length of the time-series Nt is much larger than p, the number of brain sites studied, which is exactly the reverse of the situation in neuroimaging for which relatively short time-series are measured over thousands of voxels. Methods are introduced for dealing with this situation by using sparse MAR models. These can be estimated in a two-stage process involving (i) penalized regression and (ii) pruning of unlikely connections by means of the local false discovery rate developed by Efron. Extensive simulations were performed with idealized cortical networks having small world topologies and stable dynamics. These show that the detection efficiency of connections of the proposed procedure is quite high. Application of the method to real data was illustrated by the identification of neural circuitry related to emotional processing as measured by BOLD
    corecore