204 research outputs found

    The onset of tree-like patterns in negative streamers

    Full text link
    We present the first analytical and numerical studies of the initial stage of the branching process based on an interface dynamics streamer model in the fully 3-D case. This model follows from fundamental considerations on charge production by impact ionization and balance laws, and leads to an equation for the evolution of the interface between ionized and non-ionized regions. We compare some experimental patterns with the numerically simulated ones, and give an explicit expression for the growth rate of harmonic modes associated with the perturbation of a symmetrically expanding discharge. By means of full numerical simulation, the splitting and formation of characteristic tree-like patterns of electric discharges is observed and described

    Contour dynamics model for electric discharges

    Full text link
    A contour dynamics model for electrical discharges is obtained and analyzed. The model is deduced as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, in the limit of small electron diffusion. The dispersion relation for a non planar 2-D discharge is calculated. The development and propagation of finger-like patterns are studied and their main features quantified.Comment: 4 pages, 2 fi

    Impact ionization fronts in Si diodes: Numerical evidence of superfast propagation due to nonlocalized preionization

    Full text link
    We present numerical evidence of a novel propagation mode for superfast impact ionization fronts in high-voltage Si p+p^+-nn-n+n^+ structures. In nonlinear dynamics terms, this mode corresponds to a pulled front propagating into an unstable state in the regime of nonlocalized initial conditions. Before the front starts to travel, field-ehanced emission of electrons from deep-level impurities preionizes initially depleted nn base creating spatially nonuniform free carriers profile. Impact ionization takes place in the whole high-field region. We find two ionizing fronts that propagate in opposite directions with velocities up to 10 times higher than the saturated drift velocity.Comment: 3 pages, 4 figure

    Electric discharge contour dynamics model: the effects of curvature and finite conductivity

    Full text link
    In this paper we present the complete derivation of the effective contour model for electrical discharges which appears as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, when the electron diffusion is small. It consists of two integro-differential equations defined at the boundary of the plasma region: one for the motion and a second equation for the net charge density at the interface. We have computed explicit solutions with cylindrical symmetry and found the dispersion relation for small symmetry-breaking perturbations in the case of finite resistivity. We implement a numerical procedure to solve our model in general situations. As a result we compute the dispersion relation for the cylindrical case and compare it with the analytical predictions. Comparisons with experimental data for a 2-D positive streamers discharge are provided and predictions confirmed.Comment: 23 pages, 3 figure

    Optomagnetic composite medium with conducting nanoelements

    Full text link
    A new type of metal-dielectric composites has been proposed that is characterised by a resonance-like behaviour of the effective permeability in the infrared and visible spectral ranges. This material can be referred to as optomagnetic medium. The analytical formalism developed is based on solving the scattering problem for considered inclusions with impedance boundary condition, which yields the current and charge distributions within the inclusions. The presence of the effective magnetic permeability and its resonant properties lead to novel optical effects and open new possible applications.Comment: 48 pages, 13 figures. accepted to Phys. Rev. B; to appear vol. 66, 200

    Spontaneous emission rate of an excited atom placed near a nanofiber

    Full text link
    The spontaneous decay rates of an excited atom placed near a dielectric cylinder are investigated. A special attention is paid to the case when the cylinder radius is small in comparison with radiation wavelength (nanofiber or photonic wire). In this case, the analytical expressions of the transition rates for different orientations of dipole are derived. It is shown that the main contribution to decay rates is due to quasistatic interaction of atom dipole momentum with nanofiber and the contributions of guided modes are exponentially small. On the contrary, in the case when the radius of fiber is only slightly less than radiation wavelength, the influence of guided modes can be substantial. The results obtained are compared with the case of dielectric nanospheroid and ideally conducting wire.Comment: 19 pages, 16 Postscript figure

    Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials

    Full text link
    We study the optical properties of metamaterials made from cut-wire pairs or plate pairs. We obtain a more pronounced optical response for arrays of plate pairs -- a geometry which also eliminates the undesired polarization anisotropy of the cut-wire pairs. The measured optical spectra agree with simulations, revealing negative magnetic permeability in the range of telecommunications wavelengths. Thus, nanoscopic plate pairs might serve as an alternative to the established split-ring resonator design.Comment: 3 pages, 4 figures, submitted to Opt. Let

    Opaque perfect lenses

    Get PDF
    The response of the ``perfect lens'', consisting of a slab of lossless material of thickness dd with ϵ=μ=1\epsilon=\mu=-1 at one frequency ω0\omega_0 is investigated. It is shown that as time progresses the lens becomes increasingly opaque to any physical TM line dipole source located a distance d0<d/2d_0<d/2 from the lens and which has been turned on at time t=0t=0. Here a physical source is defined as one which supplies a bounded amount of energy per unit time. In fact the lens cloaks the source so that it is not visible from behind the lens either. For sources which are turned on exponentially slowly there is an exact correspondence between the response of the perfect lens in the long time constant limit and the response of lossy lenses in the low loss limit. Contrary to the usual picture where the field intensity has a minimum at the front interface we find that the field diverges to infinity there in the long time constant limit.Comment: The 7th International Conference on the Electrical transport and Optical Properties of Inhomogenous Media (ETOPIM7
    corecore