We present the first analytical and numerical studies of the initial stage of
the branching process based on an interface dynamics streamer model in the
fully 3-D case. This model follows from fundamental considerations on charge
production by impact ionization and balance laws, and leads to an equation for
the evolution of the interface between ionized and non-ionized regions. We
compare some experimental patterns with the numerically simulated ones, and
give an explicit expression for the growth rate of harmonic modes associated
with the perturbation of a symmetrically expanding discharge. By means of full
numerical simulation, the splitting and formation of characteristic tree-like
patterns of electric discharges is observed and described