2 research outputs found

    Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC

    No full text
    AimsThis study investigates the antimicrobial activity in Staphylococcus aureus isolates (methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA)) and antioxidant activity of green propolis, Baccharis dracunculifolia DC extracts and Artepillin C. Methods and ResultsThe amount of Artepillin C in different extracts was determined by high performance liquid chromatography analysis. Minimum inhibitory concentration 90 (MIC90) was determined using 40 isolates of S. aureus inoculated in Mueller-Hinton agar culture medium containing the green propolis and B. dracunculifolia DC extracts. PVEE (green propolis ethanolic extract) and BDEH (B. dracunculifolia hexanic extract) showed the greatest antimicrobial activity with MIC90 values of 2463 and 2955gml(-1) respectively. Green propolis ethanolic and hexanic extracts (PVEE and PVEH respectively) showed the greatest antioxidant activity assessed by DPPH (1,1-diphenyl-2-picryl hydrazyl radical) with IC50 values of 1309 and 9586gml(-1) respectively. ConclusionsGreen propolis ethanolic displays better antimicrobial and antioxidant activities compared to other extracts. These activities may be related to the presence of Artepillin C in synergism with the other constituents of the extracts. Significance and Impact of the StudyIn this study, the antimicrobial activity of the extracts of green propolis and B. dracunculifolia DC demonstrated in MRSA and MSSA clinical isolates indicated that they can be important tools to treat infections caused by these bacteria1224911920sem informaçã

    Polyphenol-rich propolis extracts from China and Brazil exert anti-inflammatory effects by modulating ubiquitination of TRAF6 during the activation of NF-κB

    No full text
    Propolis has documented anti-inflammatory properties, although its mechanisms of action are poorly understood. In this study, the anti-inflammatory effects of polyphenol-rich propolis extracts (PPE) from China (CPPE) and Brazil (BPPE) were examined. Oral administration of PPE to lipopolysaccharide (LPS)-challenged mice decreased serum proinflammatory cytokine concentrations and inhibited pulmonary nuclear factor (NF)-κB activation. Both PPE types modulated LPS-induced key inflammatory mediators production in RAW 264.7 macrophages. They also suppressed NF-κB activation in HEK 293T cells, correlating well with their inhibitory effects on IκB phosphorylation and p65 nuclear translocation in LPS-activated macrophages. We found PPE suppressed NF-κB activation through delaying the ubiquitination of TRAF6 in HeLa-T6RZC stable cells and by directly disrupting the polyubiquitin synthesis in an in vitro kinase assay system. Overall, analysis showed substantial compositional differences between CPPE and BPPE; nevertheless, they both displayed similar anti-inflammatory properties through NF-κB-responsive inflammatory gene expressions by inhibiting TRAF6 dependent canonical NF-κB pathway19Part A464478The research was supported by grants from the National Natural Science Foundation of China (No. 31272512) and the earmarked fund for Modern Agro-industry Technology Research System from the Ministry of Agriculture of the People's Republic of China (CARS-45). The authors gratefully acknowledge Mrs. Jinhui Li from 985-Institute of Agrobiology and Environmental Science (985-IAES), Zhejiang University, for her technical support during the flow cytometry analysi
    corecore