223 research outputs found

    Cyclotron Production and PET/MR Imaging of 52Mn

    Get PDF
    Introduction The goal of this work is to advance the production and use of 52Mn (t½ = 5.6 d, β+: 242 keV, 29.6%) as a radioisotope for in vivo preclinical nuclear imaging. More specifically, the aims of this study were: (1) to measure the excitation function for the natCr(p,n)52Mn reaction at low energies to verify past results [1–4]; (2) to measure binding constants of Mn(II) to aid the design of a method for isolation of Mn from an irradiated Cr target via ion-exchange chromatography, building upon previously published methods [1,2,5–7]; and (3) to perform phantom imaging by positron emission tomography/magnetic resonance (PET/MR) imaging with 52Mn and non-radioactive Mn(II), since Mn has potential dual-modality benefits that are beginning to be investigated [8]. Material and Methods Thin foils of Cr metal are not available commercially, so we fabricated these in a manner similar to that reported by Tanaka and Furukawa [9]. natCr was electroplated onto Cu discs in an industrial-scale electroplating bath, and then the Cu backing was digested by nitric acid (HNO3). The remaining thin Cr discs (~1 cm diameter) were weighed to determine their thickness (~ 75–85 μm) and arranged into stacked foil targets, along with ~25 μm thick Cu monitor foils. These targets were bombarded with ~15 MeV protons for 1–2 min at ~1–2 μA from a CS-15 cyclotron (The Cyclotron Corporation, Berkeley, CA, USA). The beamline was perpendicular to the foils, which were held in a machined 6061-T6 aluminum alloy target holder. The target holder was mounted in a solid target station with front cooling by a jet of He gas and rear cooling by circulating chilled water (T ≈ 2–5 °C). Following bombardment, these targets were disassembled and the radioisotope products in each foil were counted using a high-purity Ge (HPGe) detector. Cross-sections were calculated for the natCr(p,n)52Mn reaction. Binding constants of Mn(II) were measured by incubating 54Mn(II) (t½ = 312 d) dichloride with anion- or cation-exchange resin (AG 1-X8 (Cl− form) or AG 50W-X8 (H+ form), respectively; both: 200–400 mesh; Bio-Rad, Hercules, CA) in hydrochloric acid (HCl) ranging from 10 mM-8 M (anion-exchange) and from 1 mM-1 M (cation-exchange) or in sulfuric acid (H2SO4) ranging from 10 mM-8 M on cation-exchange resin only. The amount of unbound 54Mn(II) was measured using a gamma counter, and binding constants (KD) were calculated for the various concentrations on both types of ion-exchange resin. We have used the unseparated product for preliminary PET and PET/MR imaging. natCr metal was bombarded and then digested in HCl, resulting in a solution of Cr(III)Cl3 and 52Mn(II)Cl2. This solution was diluted and imaged in a glass scintillation vial using a microPET (Siemens, Munich, Germany) small animal PET scanner. The signal was corrected for abundant cascade gamma-radiation from 52Mn that could cause random false coincidence events to be detected, and then the image was reconstructed by filtered back-projection. Additionally, we have used the digested target to spike non-radioactive Mn(II)Cl2 solutions for simultaneous PET/MR phantom imaging using a Biograph mMR (Siemens) clinical scanner. The phantom consisted of a 4×4 matrix of 15 mL conical tubes containing 10 mL each of 0, 0.5, 1.0, and 2.0 mM concentrations of non-radioactive Mn(II)Cl2 with 0, 7, 14, and 27 μCi (at start of PET acquisition) of 52Mn(II)Cl2 from the digested target added. The concentrations were based on previous MR studies that measured spin-lattice relaxation time (T1) versus concentration of Mn(II), and the activities were based on calculations for predicted count rate in the scanner. The PET/MR imaging consisted of a series of two-dimensional inversion-recovery turbo spin echo (2D-IR-TSE) MR sequences (TE = 12 ms; TR = 3,000 ms) with a wide range of inversion times (TI) from 23–2,930 ms with real-component acquisition, as well as a 30 min. list-mode PET acquisition that was reconstructed as one static frame by 3-D ordered subset expectation maximization (3D-OSEM). Attenuation correction was performed based on a two-point Dixon (2PD) MR sequence. The DICOM image files were loaded, co-registered, and windowed using the Inveon Research Workplace software (Siemens)

    Experimental Implementation of Discrete Time Quantum Random Walk on an NMR Quantum Information Processor

    Full text link
    We present an experimental implementation of the coined discrete time quantum walk on a square using a three qubit liquid state nuclear magnetic resonance (NMR) quantum information processor (QIP). Contrary to its classical counterpart, we observe complete interference after certain steps and a periodicity in the evolution. Complete state tomography has been performed for each of the eight steps making a full period. The results have extremely high fidelity with the expected states and show clearly the effects of quantum interference in the walk. We also show and discuss the importance of choosing a molecule with a natural Hamiltonian well suited to NMR QIP by implementing the same algorithm on a second molecule. Finally, we show experimentally that decoherence after each step makes the statistics of the quantum walk tend to that of the classical random walk.Comment: revtex4, 8 pages, 6 figures, submitted to PR

    Isotopic Scaling in Nuclear Reactions

    Full text link
    A three parameter scaling relationship between isotopic distributions for elements with Z≤8\leq 8 has been observed that allows a simple description of the dependence of such distributions on the overall isospin of the system. This scaling law (termed iso-scaling) applies for a variety of reaction mechanisms that are dominated by phase space, including evaporation, multifragmentation and deeply inelastic scattering. The origins of this scaling behavior for the various reaction mechanisms are explained. For multifragmentation processes, the systematics is influenced by the density dependence of the asymmetry term of the equation of state.Comment: 10 Pages, 2 Figure

    Inhomogeneous isospin distribution in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon

    Get PDF
    We have created quasiprojectiles of varying isospin via peripheral reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon. The quasiprojectiles have been reconstructed from completely isotopically identified fragments. The difference in N/Z of the reconstructed quasiprojectiles allows the investigation of the disassembly as a function of the isospin of the fragmenting system. The isobaric yield ratio 3H/3He depends strongly on N/Z ratio of quasiprojectiles. The dependences of mean fragment multiplicity and mean N/Z ratio of the fragments on N/Z ratio of the quasiprojectile are different for light charged particles and intermediate mass fragments. Observation of a different N/Z ratio of light charged particles and intermediate mass fragments is consistent with an inhomogeneous distribution of isospin in the fragmenting system.Comment: 5 pages, 4 Postscript figures, RevTe

    Thermal excitation of heavy nuclei with 5-15 GeV/c antiproton, proton and pion beams

    Get PDF
    Excitation-energy distributions have been derived from measurements of 5.0-14.6 GeV/c antiproton, proton and pion reactions with 197^{197}Au target nuclei, using the ISiS 4π\pi detector array. The maximum probability for producing high excitation-energy events is found for the antiproton beam relative to other hadrons, 3^3He and pˉ\bar{p} beams from LEAR. For protons and pions, the excitation-energy distributions are nearly independent of hadron type and beam momentum above about 8 GeV/c. The excitation energy enhancement for pˉ\bar{p} beams and the saturation effect are qualitatively consistent with intranuclear cascade code predictions. For all systems studied, maximum cluster sizes are observed for residues with E*/A ∼\sim 6 MeV.Comment: 14 pages including 5 figures and 1 table. Accepted in Physics Letter B. also available at http://nuchem.iucf.indiana.edu

    Thermally-induced expansion in the 8 GeV/c π−\pi^- + 197^{197}Au reaction

    Full text link
    Fragment kinetic energy spectra for reactions induced by 8.0 GeV/c π−\rm{\pi^-} beams incident on a 197\rm{^{197}}Au target have been analyzed in order to deduce the possible existence and influence of thermal expansion. The average fragment kinetic energies are observed to increase systematically with fragment charge but are nearly independent of excitation energy. Comparison of the data with statistical multifragmentation models indicates the onset of extra collective thermal expansion near an excitation energy of E*/A ≈\rm{\approx} 5 MeV. However, this effect is weak relative to the radial expansion observed in heavy-ion-induced reactions, consistent with the interpretation that the latter expansion may be driven primarily by dynamical effects such as compression/decompression.Comment: 12 pages including 4 postscript figure

    Isotopic Scaling of Heavy Projectile Residues from the collisions of 25 MeV/nucleon 86Kr with 124Sn, 112Sn and 64Ni, 58Ni

    Full text link
    The scaling of the yields of heavy projectile residues from the reactions of 25 MeV/nucleon 86Kr projectiles with 124Sn,112Sn and 64Ni, 58Nitargets is studied. Isotopically resolved yield distributions of projectile fragments in the range Z=10-36 from these reaction pairs were measured with the MARS recoil separator in the angular range 2.7-5.3 degrees. The velocities of the residues, monotonically decreasing with Z down to Z~26-28, are employed to characterize the excitation energy. The yield ratios R21(N,Z) for each pair of systems are found to exhibit isotopic scaling (isoscaling), namely, an exponential dependence on the fragment atomic number Z and neutron number N. The isoscaling is found to occur in the residue Z range corresponding to the maximum observed excitation energies. The corresponding isoscaling parameters are alpha=0.43 and beta=-0.50 for the Kr+Sn system and alpha=0.27 and beta=-0.34 for the Kr+Ni system. For the Kr+Sn system, for which the experimental angular acceptance range lies inside the grazing angle, isoscaling was found to occur for Z<26 and N<34. For heavier fragments from Kr+Sn, the parameters vary monotonically, alpha decreasing with Z and beta increasing with N. This variation is found to be related to the evolution towards isospin equilibration and, as such, it can serve as a tracer of the N/Z equilibration process. The present heavy-residue data extend the observation of isotopic scaling from the intermediate mass fragment region to the heavy-residue region. Such high-resolution mass spectrometric data can provide important information on the role of isospin in peripheral and mid-peripheral collisions, complementary to that accessible from modern large-acceptance multidetector devices.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Signals for a Transition from Surface to Bulk Emission in Thermal Multifragmentation

    Get PDF
    Excitation-energy-gated two-fragment correlation functions have been studied between 2 to 9A MeV of excitation energy for equilibrium-like sources formed in π−\pi^- and p + 197^{197}Au reactions at beam momenta of 8,9.2 and 10.2 GeV/c. Comparison of the data to an N-body Coulomb-trajectory code shows a decrease of one order of magnitude in the fragment emission time in the excitation energy interval 2-5A MeV, followed by a nearly constant breakup time at higher excitation energy. The observed decrease in emission time is shown to be strongly correlated with the increase of the fragment emission probability, and the onset of thermally-induced radial expansion. This result is interpreted as evidence consistent with a transition from surface-dominated to bulk emission expected for spinodal decomposition.Comment: 11 pages including 3 postscript figures (1 color
    • …
    corecore