4 research outputs found
MHC class I A region diversity and polymorphism in macaque species
The HLA-A locus represents a single copy gene that displays abundant allelic polymorphism in the human population, whereas, in contrast, a nonhuman primate species such as the rhesus macaque (Macaca mulatta) possesses multiple HLA-A-like (Mamu-A) genes, which parade varying degrees of polymorphism. The number and combination of transcribed Mamu-A genes present per chromosome display diversity in a population of Indian animals. At present, it is not clearly understood whether these different A region configurations are evolutionarily stable entities. To shed light on this issue, rhesus macaques from a Chinese population and a panel of cynomolgus monkeys (Macaca fascicularis) were screened for various A region-linked variations. Comparisons demonstrated that most A region configurations are old entities predating macaque speciation, whereas most allelic variation (>95%) is of more recent origin. The latter situation contrasts the observations of the major histocompatibility complex class II genes in rhesus and cynomolgus macaques, which share a high number of identical alleles (>30%) as defined by exon 2 sequencing
MHC class I allele frequencies in pigtail macaques of diverse origin
C1 - Journal Articles RefereedPigtail macaques (Macaca nemestrina) are an increasingly common primate model for the study of human AIDS. Major Histocompatibility complex (MHC) class I-restricted CD8(+) T cell responses are a critical part of the adaptive immune response to HIV-1 in humans and simian immunodeficiency virus (SIV) in macaques; however, MHC class I alleles have not yet been comprehensively characterized in pigtail macaques. The frequencies of ten previously defined alleles (four Mane-A and six Mane-B) were investigated in detail in 109 pigtail macaques using reference strand-mediated conformational analysis (RSCA). The macaques were derived from three separate breeding colonies in the USA, Indonesia and Australia, and allele frequencies were analysed within and between these groups. Mane-A*10, an allele that restricts the immunodominant SIV Gag epitope KP9, was the most common allele, present in 32.1% of the animals overall, with similar frequencies across the three cohorts. Additionally, RSCA identified a new allele (Mane-A*17) common to three Indonesian pigtail macaques responding to the same Gag CD8(+) T cell epitope. This broad characterization of common MHC class I alleles in more than 100 pigtail macaques further develops this animal model for the study of virus-specific CD8(+) T cell responses