21 research outputs found

    Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes

    Get PDF
    Microbially mediated processes contribute to coral reef resilience yet, despite extensive characterisation of microbial community variation following environmental perturbation, the effect on microbiome function is poorly understood. We undertook metagenomic sequencing of sponge, macroalgae and seawater microbiomes from a macroalgae-dominated inshore coral reef to define their functional potential and evaluate seasonal shifts in microbially mediated processes. In total, 125 high-quality metagenome-assembled genomes were reconstructed, spanning 15 bacterial and 3 archaeal phyla. Multivariate analysis of the genomes relative abundance revealed changes in the functional potential of reef microbiomes in relation to seasonal environmental fluctuations (e.g. macroalgae biomass, temperature). For example, a shift from Alphaproteobacteria to Bacteroidota-dominated seawater microbiomes occurred during summer, resulting in an increased genomic potential to degrade macroalgal-derived polysaccharides. An 85% reduction of Chloroflexota was observed in the sponge microbiome during summer, with potential consequences for nutrition, waste product removal, and detoxification in the sponge holobiont. A shift in the Firmicutes:Bacteroidota ratio was detected on macroalgae over summer with potential implications for polysaccharide degradation in macroalgal microbiomes. These results highlight that seasonal shifts in the dominant microbial taxa alter the functional repertoire of host-associated and seawater microbiomes, and highlight how environmental perturbation can affect microbially mediated processes in coral reef ecosystems.Australian Government Department of Industry, Innovation and Science; Advance Queensland PhD Scholarship Great Barrier Reef Marine Park Authority Management Award National Environmental Science Program (NESP)info:eu-repo/semantics/publishedVersio

    Symbioses are restructured by repeated mass coral bleaching

    Get PDF
    Survival of symbiotic reef-building corals under global warming requires rapid acclimation or adaptation. The impact of accumulated heat stress was compared across 1643 symbiont communities before and after the 2016 mass bleaching in three coral species and free-living in the environment across ~900 kilometers of the Great Barrier Reef. Resilient reefs (less aerial bleaching than predicted from high satellite sea temperatures) showed low variation in symbioses. Before 2016, heat-tolerant environmental symbionts were common in ~98% of samples and moderately abundant (9 to 40% in samples). In corals, heat-tolerant symbionts were at low abundances (0 to 7.3%) but only in a minority (13 to 27%) of colonies. Following bleaching, environmental diversity doubled (including heat-tolerant symbionts) and increased in one coral species. Communities were dynamic (Acropora millepora) and conserved (Acropora hyacinthus and Acropora tenuis), including symbiont community turnover and redistribution. Symbiotic restructuring after bleaching occurs but is a taxon-specific ecological opportunity

    Life-stage specificity and cross-generational climate effects on the microbiome of a tropical sea urchin (Echinodermata: Echinoidea)

    Get PDF
    Microbes play a critical role in the development and health of marine invertebrates, though microbial dynamics across life stages and host generations remain poorly understood in most reef species, especially in the context of climate change. Here, we use a 4-year multigenerational experiment to explore microbe–host interactions under the Intergovernmental Panel on Climate Change (IPCC)-forecast climate scenarios in the rock-boring tropical urchin Echinometra sp. A. Adult urchins (F0) were exposed for 18 months to increased temperature and pCO2 levels predicted for years 2050 and 2100 under RCP 8.5, a period which encompassed spawning. After rearing F1 offspring for a further 2 years, spawning was induced, and F2 larvae were raised under current day and 2100 conditions. Cross-generational climate effects were also explored in the microbiome of F1 offspring through a transplant experiment. Using 16S rRNA gene sequence analysis, we determined that each life stage and generation was associated with a distinct microbiome, with higher microbial diversity observed in juveniles compared to larval stages. Although life-stage specificity was conserved under climate conditions projected for 2050 and 2100, we observed changes in the urchin microbial community structure within life stages. Furthermore, we detected a climate-mediated parental effect when juveniles were transplanted among climate treatments, with the parental climate treatment influencing the offspring microbiome. Our findings reveal a potential for cross-generational impacts of climate change on the microbiome of a tropical invertebrate species

    Suppressive subtractive hybridisation transcriptomics provides a novel insight into the functional role of the hypobranchial gland in a marine mollusc

    No full text
    The hypobranchial gland present in gastropods is an organ whose function is not clearly understood. Involved in mucus production, within members of the family Muricidae it is also the source of the ancient dye Tyrian purple and its bioactive precursors. To gain further insights into hypobranchial gland biology, suppressive subtractive hybridisation was performed on hypobranchial gland and mantle tissue from the marine snail Dicathais orbita creating a differentially expressed cDNA library. 437 clones were randomly sequenced, analysed and annotated and 110 sequences had their functions putatively identified. Importantly this approach identified a putative gene involved in Tyrian purple biosynthesis, an arylsulphatase gene. Confirmation of the upregulation of arylsulphatase in the hypobranchial gland compared to the mantle was demonstrated using quantitative real-time PCR. Other genes identified as playing an important role in the hypobranchial gland were those involved in mucus protein synthesis, choline ester regulation, protein and energy production. This study confirms that the hypobranchial gland is involved in the production of mucus secretion and also identifies it as a site of chemical interaction and biosynthesis. This study lays the foundation for a better understanding of the enzymatic production of Tyrian purple precursors within the gland

    Microbiome-mediated mechanisms contributing to the environmental tolerance of reef invertebrate species

    No full text
    Coral reefs globally are increasingly impacted by climate change. High temperature and pCO2 levels disrupt multiple physiological and biochemical pathways in marine organisms, often leading to disease and mortality in sensitive reef species. Host-associated microbes contribute critical functions that underpin host health, and environmentally induced changes in microbial communities represent a potential source for new metabolic features within holobiont systems. However, whether the acquisition of new beneficial microbial functions contributes to environmental acclimatisation of reef species is currently unknown. Using extensively studied model systems, we identify potential direct and indirect microbiome-mediated mechanisms that may contribute to environmental acclimatisation in reef invertebrate species. These mechanisms include increasing energy metabolism in the host, reduction of oxidative stress, regulation of nutrients in host cells, and increased pathogen resistance. We also propose a robust experimental strategy to test how microbial metabolic pathways may facilitate environmental acclimatisation of reef taxa. Understanding the mechanisms of microbiome-mediated acclimatisation and the timescales over which it can occur will be critical for predicting reef ecosystem dynamics under future climate scenarios and applying effective reef conservation strategies

    Morphological characterization of virus-like particles in coral reef sponges

    Get PDF
    Marine sponges host complex microbial consortia that vary in their abundance, diversity and stability amongst host species. While our understanding of spongemicrobe interactions has dramatically increased over the past decade, little is known about how sponges and their microbial symbionts interact with viruses, the most abundant entities in the ocean. In this study, we employed three transmission electron microscopy (TEM) preparation methods to provide the first comprehensive morphological assessment of sponge-associated viruses. The combined approaches revealed 50 different morphologies of viral-like particles (VLPs) represented across the different sponge species. VLPs were visualized within sponge cells, within the sponge extracellular mesohyl matrix, on the sponge ectoderm and within sponge-associated microbes. Non-enveloped, non-tailed icosahedral VLPs were the most commonly observed morphotypes, although tailed bacteriophage, brick-shaped, geminate and filamentous VLPs were also detected. Visualization of sponge-associated viruses using TEM has confirmed that sponges harbor not only diverse communities of microorganisms but also diverse communities of viruses

    Metabolic reconstruction of the near complete microbiome of the model sponge Ianthella basta

    Get PDF
    Many marine sponges host highly diverse microbiomes that contribute to various aspects of host health. Although the putative function of individual groups of sponge symbionts has been increasingly described, the extreme diversity has generally precluded in-depth characterization of entire microbiomes, including identification of syntrophic partnerships. The Indo-Pacific sponge Ianthella basta is emerging as a model organism for symbiosis research, hosting only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium and a range of other low abundance or transitory taxa. Here, we retrieved metagenome assembled genomes (MAGs) representing &gt;90% of I. basta's microbial community, facilitating the metabolic reconstruction of the sponge's near complete microbiome. Through this analysis, we identified metabolic complementarity between microbes, including vitamin sharing, described the importance of low abundance symbionts, and characterized a novel microbe–host attachment mechanism in the Alphaproteobacterium. We further identified putative viral sequences, highlighting the role viruses can play in maintaining symbioses in I. basta through the horizontal transfer of eukaryotic-like proteins, and complemented this data with metaproteomics to identify active metabolic pathways in bacteria, archaea, and viruses. This data provide the framework to adopt I. basta as a model organism for studying host–microbe interactions and provide a basis for in-depth physiological experiments.</p

    Cross‐generational effects of climate change on the microbiome of a photosynthetic sponge

    No full text
    Coral reefs are facing increasing pressure from rising seawater temperatures and ocean acidification. Sponges have been proposed as possible winners in the face of climate change, however little is known about the mechanisms underpinning their predicted tolerance. Here we assessed whether microbiome mediated cross‐generational acclimatisation could enable the photosynthetic sponge\ua0Carteriospongia foliascens\ua0to survive under future climate scenarios. To achieve this, we first established the potential for vertical (cross‐generational) transmission of symbionts. Sixty‐four amplicon sequence variants accounting for >90% of the total\ua0C. foliascens\ua0microbial community were present across adult, larval and juvenile life stages, showing that a large proportion of the microbiome is vertically acquired and maintained. When\ua0C. foliascens\ua0were exposed to climate scenarios projected for 2050 and 2100, the host remained visibly unaffected (i.e. no necrosis/bleaching) and the overall microbiome was not significantly different among treatments in adult tissue, the respective larvae or recruits transplanted amongst climate treatments. However, indicator species analysis revealed that parental exposure to future climate scenarios altered the presence and abundance of a small suite of microbial taxa in the recruits, thereby revealing the potential for microbiome mediated cross‐generational acclimatisation through both symbiont shuffling and symbiont switching within a vertically acquired microbiome

    Thermal stress modifies the marine sponge virome

    No full text
    Marine sponges can form stable partnerships with a wide diversity of microbes and viruses, and this high intraspecies symbiont specificity makes them ideal models for exploring how host-associated viromes respond to changing environmental conditions. Here we exposed the abundant Great Barrier Reef sponge Rhopaloeides odorabile to elevated seawater temperature for 48 h and utilised a metaviromic approach to assess the response of the associated viral community. An increase in endogenous retro-transcribing viruses within the Caulimorviridae and Retroviridae families was detected within the first 12 h of exposure to 32 °C, and a 30-fold increase in retro-transcribing viruses was evident after 48 h at 32 °C. Thermally stressed sponges also exhibited a complete loss of ssDNA viruses which were prevalent in field samples and sponges from the control temperature treatment. Despite these viromic changes, functional analysis failed to detect any loss or gain of auxiliary metabolic genes, indicating that viral communities are not providing a direct competitive advantage to their host under thermal stress. In contrast, endogenous sponge retro-transcribing viruses appear to be replicating under thermal stress, and consistent with retroviral infections in other organisms, may be contributing to the previously described rapid decline in host health evident at elevated temperature
    corecore