8 research outputs found

    Feasibility of brain age predictions from clinical T1-weighted MRIs

    Get PDF
    An individual's brain predicted age minus chronological age (brain-PAD) obtained from MRIs could become a biomarker of disease in research studies. However, brain age reports from clinical MRIs are scant despite the rich clinical information hospitals provide. Since clinical MRI protocols are meant for specific clinical purposes, performance of brain age predictions on clinical data need to be tested. We explored the feasibility of using DeepBrainNet, a deep network previously trained on research-oriented MRIs, to predict the brain ages of 840 patients who visited 15 facilities of a health system in Florida. Anticipating a strong prediction bias in our clinical sample, we characterized it to propose a covariate model in group-level regressions of brain-PAD (recommended to avoid Type I, II errors), and tested its generalizability, a requirement for meaningful brain age predictions in new single clinical cases. The best bias-related covariate model was scanner-independent and linear in age, while the best method to estimate bias-free brain ages was the inverse of a scanner-independent and quadratic in brain age function. We demonstrated the feasibility to detect sex-related differences in brain-PAD using group-level regression accounting for the selected covariate model. These differences were preserved after bias correction. The Mean-Average Error (MAE) of the predictions in independent data was ∼8 years, 2-3 years greater than reports for research-oriented MRIs using DeepBrainNet, whereas an R2 (assuming no bias) was 0.33 and 0.76 for the uncorrected and corrected brain ages, respectively. DeepBrainNet on clinical populations seems feasible, but more accurate algorithms or transfer-learning retraining is needed

    Toward MR protocol-agnostic, unbiased brain age predicted from clinical-grade MRIs

    Get PDF
    The difference between the estimated brain age and the chronological age ('brain-PAD') could become a clinical biomarker. However, most brain age models were developed for research-grade high-resolution T1-weighted MRIs, limiting their applicability to clinical-grade MRIs from various protocols. We adopted a dual-transfer learning strategy to develop a model agnostic to modality, resolution, or slice orientation. We retrained a convolutional neural network (CNN) using 6281 clinical MRIs from 1559 patients, among 7 modalities and 8 scanner models. The CNN was trained to estimate brain age from synthetic research-grade magnetization-prepared rapid gradient-echo MRIs (MPRAGEs) generated by a 'super-resolution' method. The model failed with T2-weighted Gradient-Echo MRIs. The mean absolute error (MAE) was 5.86-8.59 years across the other modalities, still higher than for research-grade MRIs, but comparable between actual and synthetic MPRAGEs for some modalities. We modeled the "regression bias" in brain age, for its correction is crucial for providing unbiased summary statistics of brain age or for personalized brain age-based biomarkers. The bias model was generalizable as its correction eliminated any correlation between brain-PAD and chronological age in new samples. Brain-PAD was reliable across modalities. We demonstrate the feasibility of brain age predictions from arbitrary clinical-grade MRIs, thereby contributing to personalized medicine

    Brain-predicted age difference mediates the association between PROMIS sleep impairment, and self-reported pain measure in persons with knee pain

    Get PDF
    Knee pain, the most common cause of musculoskeletal pain (MSK), constitutes a severe public health burden. Its neurobiological causes, however, remain poorly understood. Among many possible causes, it has been proposed that sleep problems could lead to an increase in chronic pain symptomatology, which may be driven by central nervous system changes. In fact, we previously found that brain cortical thickness mediated the relationship between sleep qualities and pain severity in older adults with MSK. We also demonstrated a significant difference in a machine-learning-derived brain-aging biomarker between participants with low-and high-impact knee pain. Considering this, we examined whether brain aging was associated with self-reported sleep and pain measures, and whether brain aging mediated the relationship between sleep problems and knee pain. Exploratory Spearman and Pearson partial correlations, controlling for age, sex, race and study site, showed a significant association of brain aging with sleep related impairment and self-reported pain measures. Moreover, mediation analysis showed that brain aging significantly mediated the effect of sleep related impairment on clinical pain and physical symptoms. Our findings extend our prior work demonstrating advanced brain aging among individuals with chronic pain and the mediating role of brain-aging on the association between sleep and pain severity. Future longitudinal studies are needed to further understand whether the brain can be a therapeutic target to reverse the possible effect of sleep problems on chronic pain

    Feasibility of brain age predictions from clinical T1-weighted MRIs

    No full text
    An individual's brain predicted age minus chronological age (brain-PAD) obtained from MRIs could become a biomarker of disease in research studies. However, brain age reports from clinical MRIs are scant despite the rich clinical information hospitals provide. Since clinical MRI protocols are meant for specific clinical purposes, performance of brain age predictions on clinical data need to be tested. We explored the feasibility of using DeepBrainNet, a deep network previously trained on research-oriented MRIs, to predict the brain ages of 840 patients who visited 15 facilities of a health system in Florida. Anticipating a strong prediction bias in our clinical sample, we characterized it to propose a covariate model in group-level regressions of brain-PAD (recommended to avoid Type I, II errors), and tested its generalizability, a requirement for meaningful brain age predictions in new single clinical cases. The best bias-related covariate model was scanner-independent and linear in age, while the best method to estimate bias-free brain ages was the inverse of a scanner-independent and quadratic in brain age function. We demonstrated the feasibility to detect sex-related differences in brain-PAD using group-level regression accounting for the selected covariate model. These differences were preserved after bias correction. The Mean-Average Error (MAE) of the predictions in independent data was ∼8 years, 2–3 years greater than reports for research-oriented MRIs using DeepBrainNet, whereas an R2 (assuming no bias) was 0.33 and 0.76 for the uncorrected and corrected brain ages, respectively. DeepBrainNet on clinical populations seems feasible, but more accurate algorithms or transfer-learning retraining is needed

    Brain-predicted age difference mediates the association between PROMIS sleep impairment, and self-reported pain measure in persons with knee pain

    No full text
    Knee pain, the most common cause of musculoskeletal pain (MSK), constitutes a severe public health burden. Its neurobiological causes, however, remain poorly understood. Among many possible causes, it has been proposed that sleep problems could lead to an increase in chronic pain symptomatology, which may be driven by central nervous system changes. In fact, we previously found that brain cortical thickness mediated the relationship between sleep qualities and pain severity in older adults with MSK. We also demonstrated a significant difference in a machine-learning-derived brain-aging biomarker between participants with low-and high-impact knee pain. Considering this, we examined whether brain aging was associated with self-reported sleep and pain measures, and whether brain aging mediated the relationship between sleep problems and knee pain. Exploratory Spearman and Pearson partial correlations, controlling for age, sex, race and study site, showed a significant association of brain aging with sleep related impairment and self-reported pain measures. Moreover, mediation analysis showed that brain aging significantly mediated the effect of sleep related impairment on clinical pain and physical symptoms. Our findings extend our prior work demonstrating advanced brain aging among individuals with chronic pain and the mediating role of brain-aging on the association between sleep and pain severity. Future longitudinal studies are needed to further understand whether the brain can be a therapeutic target to reverse the possible effect of sleep problems on chronic pain

    Epigenetic Aging Mediates the Association between Pain Impact and Brain Aging in Middle to Older Age Individuals with Knee Pain

    Get PDF
    Chronic musculoskeletal pain is a health burden that may accelerate the aging process. Accelerated brain aging and epigenetic aging have separately been observed in those with chronic pain. However, it is unknown whether these biological markers of aging are associated with each other in those with chronic pain. We aimed to explore the association of epigenetic aging and brain aging in middle-to-older age individuals with varying degrees of knee pain. Participants (57.91 ± 8.04 y) with low impact knee pain (n = 95), high impact knee pain (n = 53), and pain-free controls (n = 26) completed self-reported pain, a blood draw, and an MRI scan. We used an epigenetic clock previously associated with knee pain (DNAmGrimAge), the subsequent difference of predicted epigenetic and brain age from chronological age (DNAmGrimAge-Difference and Brain-PAD, respectively). There was a significant main effect for pain impact group (F (2,167) = 3.847, P = 0.023, ηp2{\rm{ }}\eta _p^2 = 0.038, ANCOVA) on Brain-PAD and DNAmGrimAge-difference (F (2,167) = 6.800, P = 0.001, ηp2{\rm{ }}\eta _p^2 = 0.075, ANCOVA) after controlling for covariates. DNAmGrimAge-Difference and Brain-PAD were modestly correlated (r =0.198; P =0.010). Exploratory analysis revealed that DNAmGrimAge-difference mediated GCPS pain impact, GCPS pain severity, and pain-related disability scores on Brain-PAD. Based upon the current study findings, we suggest that pain could be a driver for accelerated brain aging via epigenome interactions

    Brain-predicted age difference estimated using DeepBrainNet is significantly associated with pain and function-a multi-institutional and multiscanner study

    No full text
    Brain age predicted differences (brain-PAD: predicted brain age minus chronological age) have been reported to be significantly larger for individuals with chronic pain compared with those without. However, a debate remains after one article showed no significant differences. Using Gaussian Process Regression, an article provides evidence that these negative results might owe to the use of mixed samples by reporting a differential effect of chronic pain on brain-PAD across pain types. However, some remaining methodological issues regarding training sample size and sex-specific effects should be tackled before settling this controversy. Here, we explored differences in brain-PAD between musculoskeletal pain types and controls using a novel convolutional neural network for predicting brain-PADs, ie, DeepBrainNet. Based on a very large, multi-institutional, and heterogeneous training sample and requiring less magnetic resonance imaging preprocessing than other methods for brain age prediction, DeepBrainNet offers robust and reproducible brain-PADs, possibly highly sensitive to neuropathology. Controlling for scanner-related variability, we used a large sample (n = 660) with different scanners, ages (19-83 years), and musculoskeletal pain types (chronic low back [CBP] and osteoarthritis [OA] pain). Irrespective of sex, brain-PAD of OA pain participants was ∼3 to 4.7 years higher than that of CBP and controls, whereas brain-PAD did not significantly differ among controls and CBP. Moreover, brain-PAD was significantly related to multiple variables underlying the multidimensional pain experience. This comprehensive work adds evidence of pain type-specific effects of chronic pain on brain age. This could help in the clarification of the debate around possible relationships between brain aging mechanisms and pain

    Protocol for a pilot and feasibility randomized-controlled trial of four weeks of oral γ-aminobutyric acid (GABA) intake and its effect on pain and sleep in middle-to-older aged adults

    No full text
    Approximately 1.71 billion people globally live with musculoskeletal pain conditions, including low back pain, knee pain, and neck pain Cieza et al. (2020). In the US, an estimated 20.4% of U.S. adult had chronic pain and 8.0% of U.S. adults had high-impact chronic pain, with higher prevalence associated with advancing age Dahlhamer et al. (2018). On the other hand, between 50 and 70 million US adults have a sleep disorder (American Sleep Association). Although the link between sleep and pain is widely established, the neurobiological mechanisms underlying this relationship have yet to be fully elucidated, specifically within an aged population. As currently available sleep and chronic pain therapies are only partially effective, novel treatment approaches are urgently needed. Given the potential mechanistic role of γ-aminobutyric acid (GABA) in both conditions, and the availability of GABA supplements over the counter, the present proposal will determine the feasibility and acceptability of oral GABA administration in middle-to-older aged adults with chronic pain and sleep disorders as well as characterize the potential neurobiological mechanisms involved in both conditions. Results from the present investigation using a parallel, double-blinded, placebo-controlled study will provide novel preliminary information needed for future translational pain and sleep research
    corecore