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A B S T R A C T   

An individual’s brain predicted age minus chronological age (brain-PAD) obtained from MRIs could become a 
biomarker of disease in research studies. However, brain age reports from clinical MRIs are scant despite the rich 
clinical information hospitals provide. Since clinical MRI protocols are meant for specific clinical purposes, 
performance of brain age predictions on clinical data need to be tested. We explored the feasibility of using 
DeepBrainNet, a deep network previously trained on research-oriented MRIs, to predict the brain ages of 840 
patients who visited 15 facilities of a health system in Florida. Anticipating a strong prediction bias in our clinical 
sample, we characterized it to propose a covariate model in group-level regressions of brain-PAD (recommended 
to avoid Type I, II errors), and tested its generalizability, a requirement for meaningful brain age predictions in 
new single clinical cases. The best bias-related covariate model was scanner-independent and linear in age, while 
the best method to estimate bias-free brain ages was the inverse of a scanner-independent and quadratic in brain 
age function. We demonstrated the feasibility to detect sex-related differences in brain-PAD using group-level 
regression accounting for the selected covariate model. These differences were preserved after bias correction. 
The Mean-Average Error (MAE) of the predictions in independent data was ~8 years, 2–3 years greater than 
reports for research-oriented MRIs using DeepBrainNet, whereas an R2 (assuming no bias) was 0.33 and 0.76 for 
the uncorrected and corrected brain ages, respectively. DeepBrainNet on clinical populations seems feasible, but 
more accurate algorithms or transfer-learning retraining is needed.   

1. Introduction 

In recent years, there has been an explosion of machine learning 
methods for the prediction of brain age based on brain structural Mag-
netic Resonance Images (MRIs) (Bashyam et al., 2020; Cole and Franke, 
2017; Yin et al., 2023). This methodology has already proven its po-
tential as a biomarker of brain aging and disease in several research 
studies (Chen et al., 2022; Christman et al., 2020; Cole et al., 2018a; 
Elliott et al., 2021; Franke and Gaser, 2019; Jawinski et al., 2022; 
Koutsouleris et al., 2014; Millar et al., 2023; Montesino-Goicolea et al., 
2022b; Wei et al., 2022). The difference between the predicted brain age 
and the chronological age [namely, the ‘brain-PAD’ or ‘brain age gap’ 
(BAG)] can be affected by pathologies and/or lifestyle factors. 

Specifically, the higher the positive brain-PAD or BAG values, the poorer 
the health of the person, and the higher the risk of health deterioration; 
whereas the lower the negative brain-PAD or BAG, the healthier the 
person. 

Most brain aging applications utilize three dimensional (3D) T1- 
weighted (T1w) brain MRIs obtained from databases primarily devised 
for research purposes. This is the natural choice given most of the brain 
age prediction methods were trained using data from research projects. 
However, this leaves out the highly rich and diverse clinical information 
that a massive amount of daily brain MRIs acquired at a myriad of 
hospital across the world can offer. Clinical brain MRI protocols are 
usually configured for specific clinical purposes and often lack the 
quality of the research MRIs that were used for training most of the 
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above-cited brain age prediction methods. 
The recent study by Wood et al. (2022) stands out among the paucity 

of brain age prediction methods applied to clinical MRIs. They used 
clinical-grade T2 weighted (T2w) and diffusion-weighted (DWI) axial 
MRIs to train a convolutional neural network (CNN) for predicting brain 
age. However, considering the increasing use of T1w MRIs with rela-
tively high resolution and nearly isotropic voxel sizes in clinical settings, 
as suggested by the clinical data obtained from our medical system, we 
propose that existing T1w-based brain age prediction methods can now 
be applied to clinical cohorts. 

In this investigation, we explored the feasibility of using an already 
trained CNN, DeepBrainNet (Bashyam et al., 2020), to predict brain age 
from clinical brain MRIs. DeepBrainNet is based on the Visual Geometry 
Group 16 (VGG16) (Simonyan et al., 2014), and it was trained on a large 
and heterogeneous T1w MRI dataset of 11,729 participants from 18 
studies spanning different scanners, ages, and locations. Due to its 
moderately “loose” training, which avoids an exclusive prioritization of 
maximum prediction accuracy, DeepBrainNet promises to be sensible to 
clinical conditions. Our sample was a set of clinical brain T1w MRIs, 
distributed among 8 different scanners, from 840 patients that were 
scanned in 15 medical facilities within our university healthcare system 
(UFHealth) in Florida, USA. 

When predicting brain age, the “regression toward the mean” phe-
nomenon (Galton, 1886) yields a distribution of brain ages where 
younger ages tend to be overestimated and older ages underestimated. If 
not accounted for, this age-related bias can affect group-level analyses 
using brain-PAD as the dependent variable via two possible mecha-
nisms: 1) a spurious correlation between brain-PAD and the independent 
variable of interest driven by correlations between the latter and chro-
nological age (Le et al., 2018) (Type I Error) and 2) an excess in 
age-related variance in brain-PAD that attenuates the estimated effect 
size of the independent variable of interest (Beheshti et al., 2019) (Type 
II Error). That is why, under the assumption that the bias is linear, the 
literature recommends to add chronological age as a covariate in group 
analyses to minimize the residuals (Beheshti et al., 2019; de Lange and 
Cole, 2020). In our clinical data, the bias resulting from the use of 
DeepBrainNet needs to be characterized so we can determine the 
appropriate covariate terms (the covariate model) needed in future 
group-level regressions of the brain-PAD. For example, we do not know 
whether other factors like the type of scanner may play a role in such 
bias. 

The above-described statistically-based approach to account for the 
bias is not possible in single-case or smaller samples, and an approach to 
directly correct the brain ages is needed. This requires testing whether a 
model of brain age correction is generalizable and can thus be used to 
obtain unbiased brain ages in new samples. Additionally, correcting the 
bias enables report of unbiased summary statistics (e.g., the mean) of 
brain ages in certain subsamples of interest. At the expense of a potential 
loss in prediction accuracy, we propose methods to obtain unbiased 
brain ages that do not inflate this accuracy, a risk posed by some 
correction efforts in the literature (Butler et al., 2021). 

The aims of the present study are to: 1) determine the feasibility of 
employing clinically collected T1-weighted MRIs using a research- 
derived and already trained algorithm for brain age prediction (i.e., 
DeepBrainNet) and characterize its age-related bias; 2) propose a 
generalizable parsimonious covariate model for group-level regression; 
3) propose a method to obtain individual unbiased brain ages in new 
clinical samples; 4) determine whether it is possible to detect, using 
group-level regression accounting for the bias, the sex-related differ-
ences in brain aging that has been previously reported in the literature 
(Beheshti et al., 2021; Goyal et al., 2019; Király et al., 2016; Sanford 
et al., 2022) and 5) whether these sex-related differences are preserved 
after the correction. 

We hypothesized that 1) DeepBrainNet can estimate brain ages from 
clinical T1-weighted MRIs with an accuracy comparable to that reported 
in research studies, 2) the most generalizable model of brain age bias is 

linear in age and scanner-independent, 3) it is possible to obtain unbi-
ased brain ages in newer samples with an accuracy at least similar to that 
of the uncorrected brain ages, 4) after accounting for the bias, brain-PAD 
is higher in males compared to females, and 5) this difference is pre-
served after the bias correction. Our sex-related hypothesis is based on 
recent findings in the brain age literature (Beheshti et al., 2021; Goyal 
et al., 2019; Király et al., 2016; Sanford et al., 2022) supporting the 
hypothesis that female brain neoteny is present in young adults and 
persists throughout the adult life span (Goyal et al., 2019). 

2. Materials and methods 

2.1. Participants and MRI data 

All participants, or their legal guardians, gave informed consent for 
their clinical data to be used for research purposes. MRI acquisition was 
carried out after all participants completed a screening form to deter-
mine MRI eligibility. To test the feasibility of applying machine learning 
algorithms to derive brain aging biomarkers from MRIs obtained from 
electronic medical records from clinical visits, we requested and ob-
tained IRB approval to receive 30,000 unique clinical images. The 
Institutional Review Board of the University of Florida IRB01 approved 
the study as non-Human exempt since the study team received coded 
and de-identified data from the University of Florida Integrated Data 
Repository with a confidentiality agreement put in place. The study was 
approved under IRB202101469 protocol on 8/20/2021. 

2.2. Brain age prediction 

DeepBrainNet is a convolutional neural network recently developed 
to predict brain age (Bashyam et al., 2020). It was trained using the 
slices of the T1w MRI images from 11,729 individuals (ages 3–95 years) 
from a diverse range of geographic locations, scanners, acquisition 
protocols, and studies, and tested in an independent sample of 2739 
individuals. In this study, we used the version of DeepBrainNet that is 
available online, which is based on the VGG16 (Simonyan et al., 2014) 
to predict and evaluate prediction accuracy in our clinical MRI data 
(objective 1 of the Introduction). 

Features for the DeepBrainNet are calculated as follows. First, the 
T1w needs to be skull-stripped. Second, the skull-stripped image has to 
be spatially normalized to the 1-mm isotropic voxel FSL skull-stripped 
T1w template using a 12-parameter linear affine transformation. For 
training, each of the skull-stripped MRIs was divided into 80 2D slices 
(centered on the z = 0 plane in MNI coordinates) and considered as an 
independent sample. To obtain a final age prediction for a test sample, 
each of 80 slices of the test scan is input to the trained model indepen-
dently and the median prediction is calculated as the subject’s predicted 
brain age. To obtain skull-stripped images in our sample, we used 
smriprep.2 Briefly, the T1w image was corrected for intensity non- 
uniformity using N4BiasFieldCorrection (Tustison et al., 2010) distrib-
uted with ANTs 2.2.0 and skull-stripped with a Nipype implementation 
of the antsBrainExtraction.sh workflow from ANTs (Avants et al., 2009), 
using OASIS30ANTs as target template. Finally, images values were 
scaled from 0 to 255. 

2.3. MRI/preprocessing quality control 

Preprocessed MRI images were submitted to a careful quality control 
(QC) procedure. Only a subset of the preprocessed MRIs that were likely 
to have bad quality were visually inspected. The selection of this subset 
of MRIs was carried out as follows. We calculated the normalized mutual 
information (NMI) (Studholme et al., 1998) between the preprocessed 
MRIs and the 1-mm isotropic voxel FSL skull-stripped T1w template. We 

2 https://www.nipreps.org/smriprep/usage.html 
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then plotted the histogram of the NMIs and visually defined a threshold 
based on those values appearing to be significantly below the main 
unimodal distribution. We inspected all images below this threshold and 
those above it until they had no visible preprocessing errors. Since the 
goal is to demonstrate feasibility of the brain age estimation for clinical 
images, which have generally less quality than those intended for 
research purposes, we were lenient regarding the consideration of what 
a “processing error” was. We only removed preprocessed MRIs that were 
indisputably unrecognizable due to motion, a brain extraction that did 
not remove significant non-brain tissues, a normalization that per-
formed poorly, or the presence of structural abnormalities, e.g., tumors, 
stroke lesions, tissue loss, but not atrophy or ventricular enlargement 
unless extremely pronounced. 

2.4. Modeling the bias 

In response to part of our objective 1, we considered a bias model 
with generic form brain age = fβ(age) + ε, where age denotes the chro-
nological age, ε is a Gaussian noise and fβ(age) is a function of age that 
depends on a set of regression coefficients contained in the vector β. We 
proposed the following forms, written in Wilkinson notation for the sake 
of simplicity:  

1. fβ(age) = age, where β contains 2 elements;  
2. fβ(age) = age2, where β contains 3 elements;  
3. fβ(age) = age ∗ scanner, where β contains 16 elements; and  
4. fβ(age) = age2 ∗ scanner, where β contains 24 elements; 

We shall denote β̂ as the estimated values of the regression co-
efficients and fβ̂(age) the estimated function characterizing the bias. For 

example, for model 1, β̂ =
[
β̂ intercept , β̂ linear

]
contains the estimated 

intercept and slope, and fβ̂(age) = β̂ intercept +β̂ linearage is its estimated 
algebraic form. 

2.5. Methods for bias-correcting the brain ages 

The use of age as a covariate in group-level analyses commonly seen 
in the literature invites the following correction of the brain age to 
remove the bias: 

corrected brain age = age + brain age – fβ̂(age) (1) 

However, even though using fβ̂(age) as a covariate in group re-
gressions of brain-PAD is appropriate to account for unwanted age- 
related variance, the presence of chronological age-dependent terms in 
Eq. (1) misleads the accuracy of the unbiased brain ages obtained using 
this equation. For example, for model 1 above, i.e., fβ(age) = age in 
Wilkinson notation, Butler et al. (2021) theoretically and empirically 
demonstrated that the correlation between the chronological ages and 
the corrected predicted brain ages obtained via Eq. (1), rcorrected brain age,age, 
is inflated and never below ~0.87, even if there is no relationship be-
tween the MRIs and age at all (Butler et al., 2021). And this lower bound 
is when the sample used to estimate the coefficients is not the same as 
the sample for which brain age is corrected. If the same sample is used 
for both, the situation worsens, as rcorrected brain age,age≥ ~0.9177 (Butler 
et al., 2021). Consequently, the mean absolute error (MAE) of the cor-
rected brain ages is also spuriously lower than the MAE of the uncor-
rected ones. 

We thus propose the following chronological age-independent 
correction: 

corrected brain age = f β̂− 1
(brain age) (2) 

Note that Eq. (2) is a generalization of the correction proposed by 

Cole et al. (2018b) for model 1, i.e., corrected brain age =
brain age− β̂ intercept

β̂ linear

. 

In this particular case, there is no risk of overestimation of the accuracy 
since rcorrected brain age,age is identical to rbrain age,age, whereas the standard 
deviation of the corrected brain ages is 1/β̂ linear times higher than the 
standard deviation of the uncorrected brain ages. Note that, for model 4, 
a quadratic equation should yield two real solutions from which one has 
to be discarded based on the range of realistic age values—in very rare 
cases two complex conjugated are produced and those data points have 
to be discarded. Corrections based on models 3 and 4 are equivalent to 
models 1 and 2, respectively, if done for each scanner independently. 

2.6. Model selection 

Models including nonlinear age-related and/or scanner-related de-
pendencies may not necessarily generalize well in newer samples due to 
the risk of overfitting related to over-parameterization. Thus, with the 
objectives outlined as follows, we selected the model that maximized the 
trade-off between parsimony and the similarity between:  

a) age and fβ̂(age), to recommend the covariate model to account for the 
bias in group analysis (objective 2); and  

b) age and corrected brain age = f
β̂
− 1

(brain age)
, to recommend the formula 

to correct the bias (objective 3). 

Parsimony is important to minimize the information needed (e.g., 
scanner used) in clinical applications. For a) parsimony is also important 
to maximize power when the sample size is small, since it minimizes the 
loss in degrees of freedom; while for b), parsimony warrants generaliz-
ability. Thus, our goodness-of-fit measure was the Akaike Information 
Criterion (AIC), which favors maximum likelihood while penalizing the 
complexity of the model (given by the number of parameters in β̂)—the 
lower the AIC the better the fit. We shall denote AICa(β̂) and AICb(β̂) the 
estimated AIC values for a) and b) above. 

We divided the subjects into a training and a test sample, containing 
80 % and 20 % of the subjects, respectively. The former was used for 
model selection, and the latter to evaluate generalization of the 
correction, i.e., the accuracy of the model in predicting the unbiased 
brain age in newer samples. Model selection was performed as follows. 
We divided the training sample (the subsample containing 80 % of the 
total sample) into 5 folds, and used 4 folds to estimate the parameters of 
the model (β̂iteration) and the remaining fold to calculate AICa(β̂iteration)

and AICb(β̂iteration). All of the abovementioned splits of the subjects were 
stratified so the samples had roughly the same chronological age dis-
tribution. To ensure reproducibility, the samples were generated with a 
fixed seed at the beginning of the study. 

After cross-validation, we selected the model with the minimum 
average AIC across fold iterations and fitted it to the whole training data 
to obtain the final estimates of the parameters, i.e., β̂selected. We 
compared the AICs (a or b) using the relative likelihood, i.e., RLm =

exp
[
− 1

2 (AICm − AICselected)
]
, where AICm is the AIC of the m − th model 

and AICselected is the minimum AIC. RLm quantifies how many times the 
m − th model is more likely than the model with minimum AIC, given the 
data. 

Finally, we corrected the predicted brain ages of the test sample by 
using β̂selected in Eq. (2) and evaluated the accuracy of the predictions 
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using the MAE, the correlation rcorrected brain age,age, and the coefficient of 

determination R2
y=x = 1 −

∑
(yi − xi)

2

∑
(yi − y)

2 , where yi and xi is the corrected 

brain age and chronological age, respectively, for the i − th participant in 
the test data, i.e., assuming the “perfect” (though incorrect) unbiased 
model y = x. The 95 % confidence interval (CI) of these accuracy 
measures was calculated using 10,000 bootstraps. 

2.7. Evaluating sex-related group differences 

To test whether we can detect sex-related difference in brain-PAD in 
our clinical sample (objective 4) after controlling for the selected co-
variate model, fβ̂selected

(age), we fitted the models 
brain PAD ∼ fβ̂selected

(age)+sex and brain PAD ∼ sex. We also evaluated 
how much of the variance is explained after adding the covariate terms 
in fβ̂selected

(age) via an Analysis of Deviance. The deviance for each model 
was calculated as twice the sum of the log of the squared residuals and a 
likelihood ratio test, i.e., the difference in deviances, was conducted to 
compare the two models. This test follows a χ2 distribution under the 
null hypothesis that the simpler model brain PAD ∼ sex is true. On the 
other hand, to test whether the sex-related difference in brain-PAD was 
preserved after the bias correction (objective 5), we fitted the model 
corrected brain PAD ∼ sex, where corrected brain PAD = f

β̂
− 1

(brain age)
−

age. This can be done under the premise that the corrected brain-PAD is 
unbiased and a covariate term depending on the chronololgical age is 
not needed. Thus, we also assessed the correlation between corrected 
brain-PAD and chronological age. 

To ensure normality in these regressions, we applied a rank-based 
inverse normal transformation to the dependent variable brain-PAD 
using the ‘Blom’ method (parameter c= 3/8 (Downton and Blom, 
1961)), modified to preserve the mean of the values. Furthermore, after 
a first fit, we removed those measurements deemed outliers, based on 
their Cook’s distance being 3 times higher than their sample average 
(NETER, 1990) and reran the models. Also, after fitting the models, we 
applied the Shapiro-Wilk test of composite normality (with unspecified 
mean and variance) on the residuals (for Platykurtic distributions; while 

the Shapiro-Francia test was used for Leptokurtic distributions) to test 
whether the normality assumption required for linear models was ful-
filled (Shapiro and Wilk, 1965). 

3. Results 

3.1. Final sample 

We received the raw DICOMS from 24,732 MRIs of 1727 patients 
from the hospital. After removing all non-brain, partial-brain and other 
images and performing QC, we had a total of 8040 whole-brain MRIs of 
several modalities [e.g., T2w, FLuid Attenuated Inversion Recovery 
FLAIR, etc.] from 1543 patients. Fig. 1 reveals that T1ws of nearly 
isotropic, maximum voxel dimension of 1.2 mm have been increasingly 
included in clinical MR protocols in recent years. Therefore, our final 
sample only included the T1w of 840 participants, allowing us to eval-
uate the accuracy of an existing T1w-based brain age prediction method 
in our clinical sample. 

Patients were scanned with eight different MRI scanners (see Table 1 
for summary statistics of some MRI parameters, the number of subjects 
per scanner and demographics). In the final sample, 554 were females 
and 286 were males. The average chronological age of the males was 2.7 
years older than that of the females (p = 0.042). Also, the chronological 
age of the total sample ranged from 15 to 95 years, with a median, mean, 
and standard deviation of 57.5, 54.3 and 18.2 years, respectively. 

3.2. Uncorrected brain age predictions 

Using DeepBrainNet, we predicted brain age in our sample of 840 
clinical T1-weighted MRIs. These predictions are shown in Fig. 2. The 
bias in the predictions that overestimates younger ages and un-
derestimates older ages is exposed by the lines representing the slope of 
the linear relation between the chronological and the predicted brain 
age for each scanner. In order to test our first hypothesis, we evaluated 
measures of accuracy of these predictions. The MAE (95 % CI) was 8.05 
([7.60, 8.52]) years, rbrain age,age (95 % CI) was 0.87 ([0.84, 0.88]), and 

Fig. 1. Comparison of the number of clinical 3D T1w MRIs versus clinical 2D T1w MRIs over time. The data shows that the former sequence is now part of the clinical 
imaging protocol. 
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R2
y=x (95 % CI) was 0.33 ([0.21, 0.42]). The results for each scanner are 

reported in Table S1 of the Supplemental Materials. 

3.3. Characterization of the bias 

Before model selection, we did a quantitative characterization of the 
bias to determine whether is nonlinear in age or scanner-dependent (this 

responds to part of our objective 1). We did this by fitting the models to 
the training sample to keep the test sample untouched and avoid influ-
encing our judgement about the models. Table 2 reports the general 
results of these fits. 

Below, we report some important coefficients and tests of nonline-
arity and scanner dependence: 

Table 1 
Scanners used for MRI acquisition.  

Scanner Manufac- 
turer 

Field 
Strength 
[T] 

Voxel sizeMean (SD) Voxel 
sizeMin.- 
Max. 

TE [ms.] 
Mean 
(SD) 

AxialCoronalSagittal Number 
of 
subjects 

Number 
of 
Females 

Age (years) 
Mean (SD) 

Aera Siemens  1.5  [0.9 (0.1), 0.8 (0.2), 0.8 (0.2)] [0.5–1.0, 
0.4–1.0, 
0.4–1.2]  

2.5 (0.3)  221250  147  90  57.9 (17.3) 

Avanto Siemens  1.5  [0.9 (0.1), 0.9 (0.1), 1.0 (0.1)] [0.5–1.0, 
0.5–1.0, 
0.9–1.2]  

3.3 (0.6)  581230  181  112  53.3 (18.1) 

Prisma Siemens  3.0  [0.9 (0.1), 0.8 (0.2), 0.8 (0.2)] [0.4–1.0, 
0.4–1.0, 
0.4–1.0]  

2.3 (0.1)  331290  162  111  54.7 (18.2) 

Sola Siemens  1.5  [0.9 (0.0), 0.8 (0.2), 0.8 (0.2)] [0.9–0.9, 
0.4–0.9, 
0.4–0.9]  

2.6 (0.2)  1430  44  34  49.4 (18.0) 

SignaHDxt GE  1.5  [0.9 (0.1), 0.9 (0.1), 1.0 (0.1)] [0.5–1.2, 
0.5–1.1, 
0.5–1.1]  

2.8 (0.3)  12600  72  58  52.5 (19.1) 

Skyra Siemens  3.0  [0.9 (0.1), 0.7 (0.2), 0.7 (0.2)] [0.5–1.1, 
0.4–1.1, 
0.4–1.0]  

2.3 (0.1)  2220  24  14  58.2 (16.6) 

Titan3T Toshiba  3.0  [0.6 (0.2), 0.9 (0.3), 0.8 (0.3)] [0.5–1.2, 
0.5–1.2, 
0.5–1.2]  

3.1 (0.6)  12180  30  19  51.5 (19.4) 

Verio Siemens  3.0  [0.9 (0.1), 0.8 (0.2), 0.9 (0.2)] [0.5–1.2, 
0.4–1.0, 
0.4–1.2]  

3.3 (2.0)  401400  180  116  54.0 (18.2) 

Note. Siemens: Siemens Healthineers. GE: General Electric Medical Systems. SD: Standard Deviation. Values were calculated across the final sample. Min.: minimum. 
Max.: maximum. TR: Repetition time. TE: Echo time. 

Fig. 2. Brain age prediction for all MRIs in this study. The colored lines represent the slope of the linear relation between the chronological and the predicted brain 
age for each scanner (see legend for color-scanner relation). 
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1. fβ(age) = age2. The intercept was β̂ intercept = 25.84 years, and was 

significantly different from 0 (p = 8.0e-137), and the slope was ̂β linear 
= 0.6, and was significantly lower than 1 (p = 1.4e-111).  

2. fβ(age) = age2. After fitting fβ(age) = βintercept +βlinearage 
+βquadatricage2 +ε to the whole training dataset, the intercept was 

β̂ intercept = 19.21 years, and was significantly different from 

0 (p = 8.4e-23), the linear coefficient was β̂ linear = 0.885, and it was 
not significantly different from 1 (p = 0.149), and the quadratic 
coefficient was β̂quadratic = − 2.65e-3 and it was significantly different 
from 0 (p = 6.27e-4).  

3. fβ(age) = age ∗ scanner, we found evidence of a difference in slopes 
among scanners i.e., H0 : β̂ linear,Aera = … = β̂ linear,Verio was rejected (F 
= 6.63, p = 1.34e-7).  

4. fβ(age) = age2 ∗ scanner. We found no evidence of scanner-related 
dependency, i.e., H0 : β̂ linear,Aera = … = β̂ linear,Verio (F = 0.92, 

p = 0.488) and H0 : β̂quadratic,Aera = … = β̂quadratic,Aera (F = 0.63, 
p = 0.734) were not rejected. For this model, the main nonlinear 
effect was also not significant, i.e., H0 :

〈
β̂quadratic,scanner

〉

scanner = 0 was 
rejected (F = 1.87, p = 0.172). 

3.4. Selecting the best covariate model for group-level analyses 

We performed 5-fold cross-validation in 80 % of the sample (training 
sample). To avoid biases due to domain mismatches, all data groups 
(folds and test set) were created having similar distributions of ages (see 
Figs. S1–3 in the Supplemental Materials). In order to test our second 
hypothesis, we computed the values of AICa, averaged across the eval-
uation folds, for the four regression models. The first column of Table 3 
shows these AICa values (see next section for the remaining columns). 
Having the minimum average AICa, we selected model 1, i.e., 
brain age ∼ age, as the best covariate model. 

3.5. Unbiased (corrected) brain age predictions 

In order to test our third hypothesis, we used the same procedure 
described in the previous section, but this time to evaluate AICb. Having 
the minimum average AICb, we selected model 2, i.e., brain age ∼ age2, 

to calculate the unbiased brain ages via Eq. (2): corrected brain age =

f
β̂
− 1

(brain age). For each uncorrected brain age, this inversion yielded two 

real quadratic roots, and one was discarded for being unrealistic. The 
second column of Table 3 shows the average AICb, and the third column 
shows, for illustration purposes, the prediction performance of the cor-
rected brain ages, also averaged across evaluation folds, if complexity of 
the model is not taken into account. 

We then reported the generalization accuracy of the bias-corrected 
brain age using the held-out 20 % of the sample (test sample). The 
plot of the corrected brain age versus chronological age in this sub-
sample is shown in Fig. 3. The MAE (95 % CI) of these predictions was 
8.12 ([7.19, 9.29]) years, rcorrected brain age,age (95 % CI) was 0.88 ([0.82, 
0.91]), R2

y=x (95 % CI) was 0.76 ([0.67, 0.83]). Also, the average cor-
rected brain-PAD was not significantly different from zero (one-sample 
t-test, p = 0.421); while the correlation between the corrected brain- 
PAD, i.e., corrected brain age − age, and chronological age was − 0.02 
and not significantly different from zero (p = 0.595). More results for 
the corrected brain age in the test sample for each scanner can be found 
in Table S2 of the Supplemental Materials (Table S3 shows the same but 
for the uncorrected predictions for comparison). 

Additionally, we found evidence of a residual moderation by scanner 
of the relationship between the chronological age and the corrected 
brain age, i.e., H0 : β̂ linear,Aera = … = β̂ linear,Verio was rejected (F = 2.34, 
p = 0.0272). This omnibus difference may be explained by a difference 
in slope between the Signa HDxt and the Avanto (p = 0.0029, uncor-
rected), the Prisma (p = 0.0073, uncorrected) or the Verio (p = 0.0292, 
uncorrected). However, we do not have evidence of this since none of 
these comparisons survived Bonferroni correction across all pairs. 

3.6. Sex-related differences in clinical brain-PAD 

Since we selected model 1 as the covariate model, we fitted 
brain PAD ∼ age+sex to our data to test our fourth hypothesis. We found 
that brain-PAD was 1.4 years (1.75 years after outlier removal) signifi-
cantly (p = 0.002) higher for males than for women. This is shown in  
Fig. 4. We also fitted brain PAD ∼ sex to our data and found no signifi-
cant sex-related difference in brain-PAD (ΔPAD = 0.42 years, 
p = 0.546). When comparing the deviances between this model and the 
null hypothesis model brain PAD ∼ sex via a likelihood ratio test, the p- 

Table 2 
Results of the regression fits in the training sample (n = 672).  

No. Model’s fβ(age) Degrees of Freedom RMSE R2 Adjusted R2 F-statisticvs. constant model p-value 

1. age  670  6.43  0.743  0.743 1.94e3 4.88e-200 
2. age2  669  6.38  0.748  0.747 992 7.75e-201 
3. age ∗ scanner  656  5.95  0785  0780 160 3.76e-207 
4. age2 ∗ scanner  648  5.92  0789  0782 106 1.32e-201 

Note. RMSE: Root Mean Squared Error. R2: Coefficient of determination of the actual fit (this is not R2
y=x). Models are written in Wilkinson’s notation.  

Table 3 
AIC and accuracy measures the evaluation folds, averaged across iterations, as well as the corresponding likelihood relative to the selected model.   

Selection of the covariate model Selection of correction formula Accuracy of unbiased brain ages 

No. Model’s fβ(age) AICa RELa AICb RELb MAE (years) r corrected
brain age,

age 

R2
y=x 

1. age 884.8* - 1014.9 0.018 7.80  0.86  0.74 
2. age2 885.1 0.855 1006.9* - 7.69  0.87  0.75 
3. age ∗ scanner 893.4 0.014 1032.8 2.35e-6 7.50  0.87  0.76 
4. age2 ∗ scanner 915.2 2.52e-7 1046.8 2.16e-9 7.64  0.88  0.76 

Note. * indicates the selected model. AIC: Akaike Information Criterion. REL: Relative Likelihood. MAE: Mean Average Error. rx,y: Correlation between x and y. R2
y=x: 

Coefficient of determination assuming the model y = x. Models are written in Wilkinson’s notation.  
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value was near zero (less than MATLAB’s precision limit). These results 
confirm that adding age to the model significantly reduces the variance, 
allowing the effect of sex to be detectable. 

On the other hand, since the corrected brain-PAD did not depend on 
chronological age, i.e., was unbiased, we fitted corrected brain PAD ∼

sex to our data to test our fifth hypothesis. We found that the sex- 
difference found in the first analysis was preserved, since the cor-
rected brain-PAD was 2.31 years (2.47 years after outlier removal) 
significantly (p = 0.0017) higher for males than for women. This is 
shown in Fig. 5. As above-mentioned, correcting the bias enables report 

of unbiased values of the mean of brain ages or brain-PAD for each sex, 
allowing us to understand what sex is actually deviating from an onto-
genetic brain aging. Here, the estimated mean of the corrected brain- 
PAD in females was not significantly different from zero, i.e., − 0.47 
with p = 0.275, whereas that of males was significantly higher than 
zero, i.e., 1.73 years with p = 0.0038. Using the coefficients of this 
model, we also determined that the estimated mean of the corrected 
brain-PAD was not significantly different from zero, i.e., 0.63 years with 
p = 0.0854 (because of imbalance in the size of the sex groups, the 
estimated mean is not equal to the actual mean) mirroring the results of 

Fig. 3. Brain age prediction, corrected for the linear bias using the model brain age ∼ age2 (in Wilkinson’s notation) or the MRIs in the test (held-out) sample. The 
colored lines represent the slope of the linear relation between the chronological and the corrected predicted brain age for each scanner (see legend for color- 
scanner relation). 

Fig. 4. Differences in brain-PAD between sexes, adjusting for age for A) the whole sample and B) after removing outliers. Within the violin plots, the shaded area is 
the interquartile region, the white dot indicates the median and the black horizontal line is the mean. Effect sizes, as quantified by the Cohen’s f2, are also shown. 
DoF: Degrees of Freedom. ΔPAD (in years): difference in brain-PAD across groups. SE (in years): Standard Error. 
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the one-sample t-test above. This suggests that males were the group 
with older appearing brains. 

In all analyses, rejection of composite normality failed after cor-
recting for multiple comparisons (p > 0.05). 

4. Discussion 

In this investigation, we have explored the feasibility of using clinical 
brain MRIs for brain age prediction based on convolutional neural net-
works (CNNs), in particular using DeepBrainNet. Our first goal was to 
compare the performance of these predictions with those from research 
MRI data in the literature. The MAE (95 % CI) of our clinical data 
(n = 840) was 8.05 ([7.60, 8.52]) years. This value was higher than the 
MAE of 4.12 years reported by Bashyam et al. (2020), the developers of 
DeepBrainNet, in independent (test or out-of-sample) research MRI data 
(n = 2739). First, we want to point out that one should not purse the 
lowest MAE by all means. As discussed by Bashyam et al., (2020), 
attempting to do that could be at the expense of removing clinically 
relevant brain age deviations. Second, brain age prediction accuracy 
metrics are study-specific, and cannot be directly compared across 
different studies (de Lange et al., 2022). Having said that, we discuss 
several possible reasons why our MAE was higher than that reported by 
Bashyam et al., (2020) next. 

First, we used a clinical sample. Thus, we would expect higher pre-
diction errors associated to the presence of many clinical conditions. 
Also, our sample was smaller than that of Bashyam et al. (2020), and 
that could have led to some overestimation of the MAE (de Lange et al., 
2022), though our narrower age range (our 15–95 years versus their 
3–93 years) may have offset this (de Lange et al., 2022). Moreover, the 
DeepBrainNet architecture used by Bashyam et al. (2020) to report the 
out-of-sample MAE was based on the Inception-ResNet-v2 architecture 
(Szegedy et al., 2017), and they do not report the out-of-sample MAE for 
the architecture used in the current study (i.e., the VGG16). In relation 
to the VGG16 architecture, Bashyam et al. (2020) only report the MAE 
for their training data, and this MAE was higher than the MAE using the 
Inception-ResNet-v2 architecture on the same training data. This hints at 
a MAE for the VGG16 architecture used on their out-of-sample likely to 
be somewhere between their out-of-sample MAE of 4.12 years for the 
Inception-ResNet-v2 architecture and our MAE of 8.05 years for the 
VGG16 architecture. 

Given that MAE is dependent on brain age distribution, and may vary 

between studies (de Lange et al., 2022), other accuracy measures like 
the correlation and the coefficient of determination assuming the model 
y = x (that we denote as R2

y=x) may be more appropriate, depending on 
the case (de Lange et al., 2022). Unfortunately, Bashyam et al. (2020) 
did not report these measures for their out-of-sample data. Fortunately, 
we have reported these measures in our own research T1w data after 
applying the same MRI preprocessing and DeepBrainNet described in 
this study (Montesino-Goicolea et al., 2022a; Valdes-Hernandez et al., 
2023). For example, for a group of participants with and without chronic 
musculoskeletal pain (n = 660) the MAE was 6.43 years ([6.07, 6.82]) 
and rbrain age,age was 0.86 ([0.83, 0.87]) and R2

y=x was 0.63 ([0.57, 0.68]) 
(Valdes-Hernandez et al., 2023). While the correlation in that study is 
comparable to our rbrain age,age= 0.87 ([0.84, 0.88]), R2

y=x was much 
higher than our value of 0.33 ([0.21, 0.42]), due to the strong bias in the 
current clinical data. However, the age range of that pain study was 
narrower, and concentrated around the median age than ours, possibly 
favoring their rbrain age,age and R2

y=x to higher values compared to ours (de 
Lange et al., 2022). 

On the other hand, our MAE was higher than that reported by Wood 
et al. (2022), where brain age was also predicted from clinical MRI, but 
using other modalities, i.e., T2w and/or DWI MRIs. This could owe to 
the fact their model was trained directly on a subset of clinical MRIs, 
while we have used a model that was initially devised for 
research-oriented MRIs, or maybe because they used a different deep 
learning model, based on DenseNEt121 (Huang et al., 2017), a 3D model 
that yielded a less pronounced bias in the predictions. In a recent revi-
sion of the performance of deep learning methods for brain age pre-
diction, available as a preprint in (Dörfel et al., 2023), DeepBrainNet 
showed a slightly higher prediction bias than other CNNs. Future studies 
involving clinical data should capitalize on the ability of DeepBrainNet 
to be retrained with small samples via transfer learning (Bashyam et al., 
2020), or employ other deep learning models. 

We also wanted to characterize the age-related bias provoked by the 
“regression to the mean” phenomenon that overestimates younger ages 
and underestimates older ones. We considered the possibility that the 
bias was dependent on age-related nonlinearities and scanner type. We 
found that, while these effects are significant if modeled separately, they 
seem to cancel each other when considered simultaneously. Also, terms 
quadratic in chronological age could solely explain the bias, since when 
they are considered in the model, the slope of the bias is not significantly 

Fig. 5. Differences in corrected brain-PAD between sexes for A) the whole sample and B) after removing outliers. Within the violin plots, the shaded area is the 
interquartile region, the white dot indicates the median and the black horizontal line is the mean. Effect sizes, as quantified by the Cohen’s f2, are also shown. DoF: 
Degrees of Freedom. ΔPAD (in years): difference in corrected brain-PAD across groups. SE (in years): Standard Error. 
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different from 1. Nevertheless, irrespective of the presence of these 
nonlinearities and scanner dependencies, we considered more important 
to maximize the trade-off between generalizable goodness-of-fit and 
parsimony. That is why we selected models for specific purposes based 
on the Akaike Information Criterion. 

We determined that the best covariate model to account for the bias 
when performing group-level regression of brain-PAD is the model that 
linearly depends on chronological age, without any scanner de-
pendency. We remind that accounting for the bias is important to avoid 
spurious associations due to correlations between chronological age and 
the independent variable of interest (Beheshti et al., 2019) (a cause of 
Type I error) and to reduce unwanted age-related variance (Beheshti 
et al., 2019; de Lange and Cole, 2020) (a cause of Type II error). We 
exemplified this by exploring the effect of adding chronological age as a 
covariate when comparing brain-PAD among sexes. This is a good 
example since both Type II and Type I errors may occur. Indeed, besides 
the unavoidable age-related bias, chronological age significantly 
differed among sexes. In addition, we clarify that this selection driven by 
a maximization of parsimony may only prove useful when the loss in 
degrees of freedom due to the over-parameterization of the covariate 
model significantly affects the power of the second-level analysis due to 
a small sample size. For large enough samples sizes, one may just use the 
covariate model that delivers the maximum likelihood, as long as the 
regression model is designed adequately and we are cognizant of the 
dangers related to stepwise schemes (Smith, 2018). 

To accomplish our fourth goal, a model with a nonlinear age-related 
dependency, but no scanner dependency, was use to propose the bias- 
correction formula. The formula has no explicit dependency on chro-
nological age and thus does not provoke inflation of the accuracy of the 
predictions. In fact, the correlation between the brain age and chrono-
logical age is the same for the uncorrected and corrected cases. On the 
other hand, while it is not trivial to theoretically determine the effect of 
our proposed correction on the MAE, we expect it to be inflated, similar 
to the way the standard deviation of the corrected brain age scales with 
the inverse of the slope of the bias when using Cole et al. (2018)’s linear 
variant (de Lange and Cole, 2020). Thus, the fact that the MAE of our 
corrected predictions was only 8.12–8.05 = 0.07 years higher than the 
MAE of the uncorrected ones can be considered an indicator of good 
performance. 

Also, after the bias correction, the correlation between brain-PAD 
and chronological age disappeared but some moderation by scanner of 
the association between the chronological ages and the predicted brain 
ages remained. Marginal evidence (based on uncorrected p-values) 
suggests that it involved differences between the “Signa HDxt” and some 
other scanners. This scanner is located in one of the 15 MRI facilities that 
contributed to this study. It is possible that this residual moderation 
could be related to some specific characteristics of that particular facility 
(e.g., scanner, technical, staff, data handlings). Further examination is 
needed to clarify this. 

Our sex-related group analysis provided evidence in favor of our 
fourth hypothesis. That is, in our clinical sample, when controlling for 
the bias, males had a more accelerated brain age (by about a year and a 
half) than females. These results support Beheshti et al. (2021)’s case 
about the importance of accounting for the bias to successfully detect 
sex-related differences in brain age gap (Beheshti et al., 2021). More-
over, we found evidence supporting our fifth hypothesis, since these 
sex-related differences were preserved after bias correction. 

Our sex-related results also go along findings in the literature where 
males have older appearing brains than females. However, there are 
some alarming discrepancies. For example, Goyal et al. (2019) found 
that females had brain age gaps lower than males, as measured using 
Positron Emission Tomography (PET) imaging (Lim et al., 2020), and 
the former was significantly lower than zero while the latter was not. 
They attributed it to a mediating role of hormones, sex-related differ-
ences in intrinsic cellular and metabolic systems, and immune system 
sexual dimorphism; involving less loss of cerebral blood flow following 

puberty, heightened brain glycolysis during young adulthood, less loss 
of protein synthesis-related gene expression during aging, and a delay in 
the peak transition point of brain gene expression in females (Goyal 
et al., 2019). Our results do not support this hypothesis since our dif-
ference is explained by males having a significant positive average 
corrected brain-PAD, and females having an average corrected 
brain-PAD that is not significantly different from zero. Rather, these 
values are more in agreement with Beheshti et al. (2021) and Cole et al., 
(2018b), where males seem to be the group with significantly higher 
brain age acceleration. 

In terms of the size of effects, our sex-related difference in brain-PAD 
was smaller than that reported by Goyal et al. (2019) using PET (about 
3–5 years), similar to Beheshti et al., 2021 (~1.2 years), predicted from 
fluorodeoxyglucose-PET, and smaller than Cole et al., 2018b(~5.58 
years), predicted from MRI. While this could be related to differences in 
methodology, it could also owe to the clinical nature of our sample. 
Indeed, the data in the Beheshti et al., 2021 study suggests that neuro-
degeneration could reverse the sex-related differences in brain age 
acceleration. 

4.1. Limitations and future directions 

Our findings support the feasibility of predicting brain age with ac-
curacy from T1w MRIs of relatively high and isotropic resolution. 
However, some limitations might affect their validity and deserve to be 
discussed. 

First, the current study set out to evaluate the feasibility of predicting 
accurate brain ages and characterize their bias using MRIs acquired with 
clinical purposes. However, we have excluded MRIs having evident 
structural abnormalities, e.g., tumors, stroke lesions, tissue loss. This is 
because we did not want these obvious outliers to affect these objectives. 
With a path to feasibility now established, the next step will be to detect 
significant associations between brain-PAD and the presence and/or 
severity of structural abnormalities in an independent sample, as well as 
other clinical diagnoses. Given the exploratory nature of the study and 
our limited ethical approval (i.e., only de-identified dataset), we did not 
have enough information about the clinical characteristics of the pa-
tients. We are currently working on getting that information for the next 
study. In general, future studies with well-characterized clinical phe-
notypes are needed to determine how much of their possible underlying 
conditions are affecting the estimations. 

The study is also affected by some methodological limitations. For 
example, age was not evenly distributed in our sample. This could have 
biased model selection towards a model that best corrects brain ages of 
participants with more frequent chronological ages in the sample. In 
fact, we re-ran the analysis weighting the observations according to the 
inverse of the frequency of the occurrence of the chronological ages 
(bestowing more importance to the lowest and highest ends of the age 
distribution) and the model including a term quadratic in age without 
scanner moderation (model 2) had the lowest AICa, but closely followed 
by the model 1 with RLa = 0.97. Furthermore, given all our MRIs are 
from a single healthcare system, it is unclear whether the brain age 
estimation generalizes well to other clinical systems, and future studies 
including multi-institutional samples are needed. 

Our sex-related analysis is far from spotless. The use of the same data 
for both selecting the covariate model and for the group-level analysis 
itself may raise a red flag of “data leakage”. But such circularity would 
be related only to a deficient selection of the covariate model, which 
may make some dent on power and sensitivity. A more rigorous 
approach would be to select the covariate model in the training sample 
and limit the sex-related group analysis to the test sample. We in fact did 
this but found no significant differences in brain-PAD among sexes. 
However, we believe the culprit of this negative result is likely an un-
derpowered test sample, being 5 times smaller than the whole sample (i. 
e., n = 168), rather than an inappropriate covariate model. 

There might be an additional problem related to the sex-related 
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analysis. The fact that a machine learning algorithm was trained using 
both males and females obscures sex differences since the algorithm 
would account for these differences in maximizing accuracy. To over-
come this, Goyal et al. (2019) propose to train the machine learning 
algorithm in one sex and test it in the other (Beheshti et al., 2021). 
Unfortunately, the online available DeepBrainNet was trained using 
both sexes together. However, Bashyam et al. (2020) reported that the 
Mean Absolute Error (MAE) did not exhibit any significant difference 
between sexes, regardless of whether the model was trained on data 
from both sexes or solely on data from the opposite sex (Bashyam et al., 
2020). This suggests that, in our sample, males may indeed have older 
appearing brains than females. Nevertheless, we believe these results 
and those reported in the above-cited studies may need to be revisited in 
the light of these considerations. 

Finally, with the increase in the use of T1w MRIs with relatively high 
resolution and nearly isotropic voxel sizes in clinical settings, compared 
to clinical MRIs of lower resolution (e.g., with a 5-mm slice thickness) 
and other modalities [e.g., T2-weighted or (FLAIR)], which have been 
hitherto typical in clinical protocols, it is now possible to use current 
available and well-tested T1w-based brain age methods to predict brain 
age in clinical MRI data. However, with this recommendation, we are 
ignoring the supplementary information provided by other modalities. 
Novel methods, based on a multimodal combination of brain MRI im-
ages, like in Wood et al. (2022), must be developed, to leverage the 
diverse clinical information that multimodal MRI data contains, to in-
crease the accuracy of the predictions, and to boost the relevant sensi-
tivity of predicted brain age to clinical variables of interest. A logical 
next step is to repurpose DeepBrainNet (via transfer learning) to predict 
brain age, by training it on a clinical multimodal MRI database. 

4.2. Conclusions 

In summary, brain age can be predicted from clinical brain T1- 
weighted MRIs from patients that visit the UFHealth system in North 
Central Florida, USA. Future studies are needed to test the generaliz-
ability of these predictions to other clinical systems and to investigate 
the ability of the predicted brain age difference in multimodal clinical 
data to characterize pathological conditions. We stress that predicting 
brain age at the individual level is the cornerstone of future brain age- 
based biomarkers and personalized medicine, and it is in clinical set-
tings where brain age biomarkers (and any biomarker in general) are 
needed the most. Taking the first steps toward that direction, we 
explored the feasibility of brain age predictions on a clinical population. 
We conclude recommending more accurate CNNs or transfer-learning 
retraining to increase the accuracy of the brain age predictions. 
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