5 research outputs found

    Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance

    Get PDF
    Chemotherapy remains the standard of care for most cancers worldwide, however development of chemoresistance due to the presence of the drug-effluxing ATP binding cassette (ABC) transporters remains a significant problem. The development of safe and effective means to overcome chemoresistance is critical for achieving durable remissions in many cancer patients. We have investigated the energetic demands of ABC transporters in the context of the metabolic adaptations of chemoresistant cancer cells. Here we show that ABC transporters use mitochondrial-derived ATP as a source of energy to efflux drugs out of cancer cells. We further demonstrate that the loss of methylation-controlled J protein (MCJ) (also named DnaJC15), an endogenous negative regulator of mitochondrial respiration, in chemoresistant cancer cells boosts their ability to produce ATP from mitochondria and fuel ABC transporters. We have developed MCJ mimetics that can attenuate mitochondrial respiration and safely overcome chemoresistance in vitro and in vivo. Administration of MCJ mimetics in combination with standard chemotherapeutic drugs could therefore become an alternative strategy for treatment of multiple cancers

    High-throughput gene discovery in the rat

    Get PDF
    The rat is an important animal model for human diseases and is widely used in physiology. In this article we present a new strategy for gene discovery based on the production of ESTs from serially subtracted and normalized cDNA libraries, and we describe its application for the development of a comprehensive nonredundant collection of rat ESTs. Our new strategy appears to yield substantially more EST clusters per ESTs sequenced than do previous approaches that did not use serial subtraction. However, multiple rounds of library subtraction resulted in high frequencies of otherwise rare internally primed cDNAs, defining the limits of this powerful approach. To date, we have generated >200,000 3′ ESTs from >100 cDNA libraries representing a wide range of tissues and developmental stages of the laboratory rat. Most importantly, we have contributed to ∼50,000 rat UniGene clusters. We have identified, arrayed, and derived 5′ ESTs from >30,000 unique rat cDNA clones. Complete information, including radiation hybrid mapping data, is also maintained locally at http://genome.uiowa.edu/clcg.html. All of the sequences described in this article have been submitted to the dbEST division of the NCBI

    Prognosis of Myocardial Damage in Sarcoidosis Patients With Preserved Left Ventricular Ejection Fraction

    No full text
    BackgroundCardiac sarcoidosis is associated with an increased risk of heart failure and sudden death, but its risk in patients with preserved left ventricular ejection fraction is unknown. Using cardiovascular magnetic resonance in patients with extracardiac sarcoidosis and preserved left ventricular ejection fraction, we sought to (1) determine the prevalence of cardiac sarcoidosis or associated myocardial damage, defined by the presence of late gadolinium enhancement (LGE), (2) quantify their risk of death/ventricular tachycardia (VT), and (3) identify imaging-based covariates that predict who is at greatest risk of death/VT.Methods and resultsParameters of left and right ventricular function and LGE burden were measured in 205 patients with left ventricular ejection fraction >50% and extracardiac sarcoidosis who underwent cardiovascular magnetic resonance for LGE evaluation. The association between covariates and death/VT in the entire group and within the LGE+ group was determined using Cox proportional hazard models and time-dependent receiver-operator curves analysis. Forty-one of 205 patients (20%) had LGE; 12 of 205 (6%) died or had VT during follow-up; of these, 10 (83%) were in the LGE+ group. In the LGE+ group (1) the rate of death/VT per year was >20× higher than LGE- (4.9 versus 0.2%, P<0.01); (2) death/VT were associated with a greater burden of LGE (14±11 versus 5±5%, P<0.01) and right ventricular dysfunction (right ventricular EF 45±12 versus 53±28%, P=0.04). LGE burden was the best predictor of death/VT (area under the receiver-operating characteristics curve, 0.80); for every 1% increase of LGE burden, the hazard of death/VT increased by 8%.ConclusionsSarcoidosis patients with LGE are at significant risk for death/VT, even with preserved left ventricular ejection fraction. Increased LGE burden and right ventricular dysfunction can identify LGE+ patients at highest risk of death/VT
    corecore