3 research outputs found

    Excitonic Resonances in Coherent Anti-Stokes Raman Scattering from Single-Walled Carbon Nanotubes

    Get PDF
    In this work we investigate the role of exciton resonances in coherent anti-Stokes Raman scattering (er-CARS) in single walled carbon nanotubes (SWCNTs). We drive the nanotube system in simultaneous phonon and excitonic resonances, where we observe a superior enhancement by orders of magnitude exceeding non-resonant cases. We investigated the resonant effects in five (n,m)(n,m) chiralities and find that the er-CARS intensity varies drastically between different nanotube species. The experimental results are compared with a perturbation theory model. Finally, we show that such giant resonant non-linear signals enable rapid mapping and local heating of individualized CNTs, suggesting easy tracking of CNTs for future nanotoxology studies and therapeutic application in biological tissues

    Excitonic Resonances in Coherent Anti-Stokes Raman Scattering from Single Wall Carbon Nanotubes

    Full text link
    In this work we investigate the role of exciton resonances in coherent anti-Stokes Raman scattering (er-CARS) in single walled carbon nanotubes (SWCNTs). We drive the nanotube system in simultaneous phonon and excitonic resonances, where we observe a superior enhancement by orders of magnitude exceeding non-resonant cases. We investigated the resonant effects in five (n,m)(n,m) chiralities and find that the er-CARS intensity varies drastically between different nanotube species. The experimental results are compared with a perturbation theory model. Finally, we show that such giant resonant non-linear signals enable rapid mapping and local heating of individualized CNTs, suggesting easy tracking of CNTs for future nanotoxology studies and therapeutic application in biological tissues.Comment: 17 pages, 6 figure
    corecore