170 research outputs found

    Assessment of the error budget for stratospheric ozone profiles retrieved from OMPS limb scatter measurements

    Get PDF
    This study presents an error budget assessment for the ozone profiles retrieved at the University of Bremen through limb observations of the Ozone Mapper and Profiler Suite – Limb Profiler Suomi National Polar-orbiting Partnership (OMPS-LP SNPP) satellite instrument. The error characteristics are presented in a form that aims at being compliant with the recommendations and the standardizing effort of the Towards Unified Error Reporting (TUNER) project. Besides the retrieval noise, contributions from retrieval parameters are extensively discussed and quantified by using synthetic retrievals performed with the SCIATRAN radiative transfer model. For this investigation, a representative set of OMPS-LP measurements is selected to provide a reliable estimation of the uncertainties as a function of latitude and season. Errors originating from model approximations and spectroscopic data are also taken into account and found to be non-negligible. The choice of the ozone cross section is found to be relevant, as expected. Overall, we classify the estimated errors as random or systematic and investigate correlations between errors from different sources. After summing up the relevant error components, we present an estimate of the total random uncertainty on the retrieved ozone profiles, which is found to be in the 5 %–30 % range in the lower stratosphere, 3 %–5 % in the middle stratosphere, and 5 %–7 % at upper altitudes. The systematic uncertainty is mainly due to cloud contamination and model errors in the lower stratosphere and due to the retrieval bias at higher altitudes. The corresponding total bias exceeds 5 % only above 50 km and below 20 km. After computing the estimate of the overall random and systematic error components, we also provide an ex-post assessment of the uncertainties using self-collocated OMPS-LP observations and collocated Microwave Limb Sounder (MLS) data in a χ2 fashion

    Organ Donation and Utilization in the United States, 1997–2006

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75743/1/j.1600-6143.2008.02171.x.pd

    Differences in ozone retrieval in MIPAS channels A and AB: a spectroscopic issue

    Get PDF
    Discrepancies in ozone retrievals in MIPAS channels A (685–970cm−1) and AB (1020–1170cm−1) have been a long-standing problem in MIPAS data analysis, amounting to an interchannel bias (AB–A) of up to 8% between ozone volume mixing ratios in the altitude range 30–40km. We discuss various candidate explanations, among them forward model and retrieval algorithm errors, interchannel calibration inconsistencies and spectroscopic data inconsistencies. We show that forward-modelling errors as well as errors in the retrieval algorithm can be ruled out as an explanation because the bias can be reproduced with an entirely independent retrieval algorithm (GEOFIT), relying on a different forward radiative transfer model. Instrumental and calibration issues can also be refuted as an explanation because ozone retrievals based on balloon-borne measurements with a different instrument (MIPAS-B) and an independent level-1 data processing scheme produce a rather similar interchannel bias. Thus, spectroscopic inconsistencies in the MIPAS database used for ozone retrieval are practically the only reason left. To further investigate this issue, we performed retrievals using additional spectroscopic databases. Various versions of the HITRAN database generally produced rather similar channel AB–A differences. Use of a different database, namely GEISA-2015, led to similar results in channel AB, but to even higher ozone volume mixing ratios for channel A retrievals, i.e. to a reversal of the bias. We show that the differences in MIPAS channel A retrievals result from about 13% lower air-broadening coefficients of the strongest lines in the GEISA-2015 database. Since the errors in line intensity of the major lines used in MIPAS channels A and AB are reported to be considerably lower than the observed bias, we posit that a major part of the channel AB–A differences can be attributed to inconsistent air-broadening coefficients as well. To corroborate this assumption we show some clearly inconsistent air-broadening coefficients in the HITRAN-2008 database. The interchannel bias in retrieved ozone amounts can be reduced by increasing the air-broadening coefficients of the lines in MIPAS channel AB in the HITRAN-2008 database by 6%–8%

    Validation of MIPAS IMK/IAA V5R_O3_224 Ozone Profiles

    Get PDF
    We present the results of an extensive validation program of the most recent version of ozone vertical profiles retrieved with the IMK/IAA (Institute for Meteorology and Climate Research/Instituto de Astrofisica de Andalucia) MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) research level 2 processor from version 5 spectral level 1 data. The time period covered corresponds to the reduced spectral resolution period of the MIPAS instrument, i.e., January 2005-April 2012. The comparison with satellite instruments includes all post-2005 satellite limb and occultation sensors that have measured the vertical profiles of tropospheric and stratospheric ozone: ACE-FTS, GOMOS, HALOE, HIRDLS, MLS, OSIRIS, POAM, SAGE II, SCIAMACHY, SMILES, and SMR. In addition, balloon-borne MkIV solar occultation measurements and ground-based Umkehr measurements have been included, as well as two nadir sensors: IASI and SBUV. For each reference data set, bias determination and precision assessment are performed. Better agreement with reference instruments than for the previous data version, V5R_O3_220 (Laeng et al., 2014), is found: the known high bias around the ozone vmr (volume mixing ratio) peak is significantly reduced and the vertical resolution at 35 km has been improved. The agreement with limb and solar occultation reference instruments that have a known small bias vs. ozonesondes is within 7% in the lower and middle stratosphere and 5% in the upper troposphere. Around the ozone vmr peak, the agreement with most of the satellite reference instruments is within 5 %; this bias is as low as 3% for ACE-FTS, MLS, OSIRIS, POAM and SBUV

    MIPAS IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) Measurements: Accuracy, Precision and Long-Term Stability

    Get PDF
    Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2) of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European satellite Envisat have been retrieved from versions MIPAS/4.61 to MI-PAS/4.62 and MIPAS/5.02 to MIPAS/5.06 level-1b data using the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de Astrofisica de Andalucia (IAA). These profiles have been compared to measurements taken by the balloon-borne cryosampler, Mark IV (MkIV) and MIPAS-Balloon (MIPAS-B), the airborne MIPAS-STRatospheric aircraft (MIPAS-STR), the satellite-borne Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the High Resolution Dynamic Limb Sounder (HIRDLS), as well as the ground-based Halocarbon and other Atmospheric Trace Species (HATS) network for the reduced spectral resolution period (RR: January 2005-April 2012) of MIPAS. ACE-FTS, MkIV and HATS also provide measurements during the high spectral resolution period (full resolution, FR: July 2002-March 2004) and were used to validate MIPAS CFC-11 and CFC-12 products during that time, as well as profiles from the Improved Limb Atmospheric Spectrometer, ILAS-II. In general, we find that MIPAS shows slightly higher values for CFC-11 at the lower end of the profiles (below ~ 15 km) and in a comparison of HATS ground-based data and MIPAS measurements at 3 km below the tropopause. Differences range from approximately 10 to 50 pptv (~ 5-20 %) during the RR period. In general, differences are slightly smaller for the FR period. An indication of a slight high bias at the lower end of the profile exists for CFC-12 as well, but this bias is far less pronounced than for CFC-11 and is not as obvious in the relative differences between MIPAS and any of the comparison instruments. Differences at the lower end of the profile (below ~15 km) and in the comparison of HATS and MIPAS measurements taken at 3 km below the tropopause mainly stay within 10-50 pptv (corresponding to ~ 2-10% for CFC-12) for the RR and the FR period. Between similar to 15 and 30 km, most comparisons agree within 10-20 pptv (10-20 %), apart from ILAS-II, which shows large differences above similar to 17 km. Overall, relative differences are usually smaller for CFC-12 than for CFC-11. For both species -CFC-11 and CFC-12 - we find that differences at the lower end of the profile tend to be larger at higher latitudes than in tropical and subtropical regions. In addition, MIPAS profiles have a maximum in their mixing ratio around the tropopause, which is most obvious in tropical mean profiles. Comparisons of the standard deviation in a quiescent atmosphere (polar summer) show that only the CFC-12 FR error budget can fully explain the observed variability, while for the other products (CFC-11 FR and RR and CFC-12 RR) only two-thirds to three-quarters can be explained. Investigations regarding the temporal stability show very small negative drifts in MIPAS CFC-11 measurements. These instrument drifts vary between ~ 1 and 3% decade-1. For CFC-12, the drifts are also negative and close to zero up to similar to 30 km. Above that altitude, larger drifts of up to similar to 50% decade-1 appear which are negative up to similar to 35 km and positive, but of a similar magnitude, above

    Methane and nitrous oxide retrievals from MIPAS-ENVISAT

    Get PDF
    We present the strongly revised IMK/IAA MIPAS-ENVISAT CH4 and N2O data products for the MIPAS full resolution (versions V5H_CH4_21 and V5H_N2O_21) and for the reduced resolution period (versions V5R_CH4_224, V5R_CH4_225, V5R_N2O_224 and V5R_N2O_225). Differences to older retrieval versions which are known to have a high bias are discussed. The usage of the HITRAN 2008 spectroscopic dataset leads to lower values for both gases in the lower part of the profile. The improved correction of additive radiance offsets and handling of background radiance continua allows for aerosol contributions at altitudes in the upper stratosphere and above. These changes lead to more plausible values both in the radiance offset and in the profiles of the continuum absorption coefficients. They also increase the fraction of converged retrievals. Some minor changes were applied to the constraint of the inverse problem, causing small differences in the retrieved profiles, mostly due to the relaxation of off-diagonal regularisation matrix elements for the calculation of jointly retrieved absorption coefficient profiles. Spectral microwindows have been adjusted to avoid areas with saturated spectral signatures. Jointly retrieving profiles of water vapour and nitric acid serves to compensate spectroscopic inconsistencies. We discuss the averaging kernels of the products and their vertical resolution

    MIPAS IMK/IAA Carbon Tetrachloride (CCl4) Retrieval and First Comparison With Other Instruments

    Get PDF
    MIPAS thermal limb emission measurements were used to derive vertically resolved profiles of carbon tetrachloride (CCl4). Level-1b data versions MIPAS/5.02 to MIPAS/5.06 were converted into volume mixing ratio profiles using the level-2 processor developed at Karlsruhe Institute of Technology (KIT) Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de Astrofisica de Andalucia (IAA). Consideration of peroxyacetyl nitrate (PAN) as an interfering species, which is jointly retrieved, and CO2 line mixing is crucial for reliable retrievals. Parts of the CO2 Q-branch region that overlap with the CCl4 signature were omitted, since large residuals were still found even though line mixing was considered in the forward model. However, the omitted spectral region could be narrowed noticeably when line mixing was accounted for. A new CCl4 spectro-scopic data set leads to slightly smaller CCl4 volume mixing ratios. In general, latitude-altitude cross sections show the expected CCl4 features with highest values of around 90 pptv at altitudes at and below the tropical tropopause and values decreasing with altitude and latitude due to stratospheric decomposition. Other patterns, such as subsidence in the polar vortex during winter and early spring, are also visible in the distributions. The decline in CCl4 abundance during the MI-PAS Envisat measurement period (July 2002 to April 2012) is clearly reflected in the altitude-latitude cross section of trends estimated from the entire retrieved data set

    Harmonized Dataset of Ozone Profiles from Satellite Limb and Occultation Measurements

    Get PDF
    In this paper, we present a HARMonized dataset of OZone profiles (HARMOZ) based on limb and occultation measurements from Envisat (GOMOS, MIPAS and SCIAMACHY), Odin (OSIRIS, SMR) and SCISAT (ACE-FTS) satellite instruments. These measurements provide high-vertical-resolution ozone profiles covering the altitude range from the upper troposphere up to the mesosphere in years 2001-2012. HARMOZ has been created in the framework of the European Space Agency Climate Change Initiative project. The harmonized dataset consists of original retrieved ozone profiles from each instrument, which are screened for invalid data by the instrument teams. While the original ozone profiles are presented in different units and on different vertical grids, the harmonized dataset is given on a common pressure grid in netCDF (network common data form)-4 format. The pressure grid corresponds to vertical sampling of similar to 1 km below 20 km and 2-3 km above 20 km. The vertical range of the ozone profiles is specific for each instrument, thus all information contained in the original data is preserved. Provided altitude and temperature profiles allow the representation of ozone profiles in number density or mixing ratio on a pressure or altitude vertical grid. Geolocation, uncertainty estimates and vertical resolution are provided for each profile. For each instrument, optional parameters, which are related to the data quality, are also included. For convenience of users, tables of biases between each pair of instruments for each month, as well as bias uncertainties, are provided. These tables characterize the data consistency and can be used in various bias and drift analyses, which are needed, for instance, for combining several datasets to obtain a long-term climate dataset. This user-friendly dataset can be interesting and useful for various analyses and applications, such as data merging, data validation, assimilation and scientific research. The dataset is available at http://www.esa-ozone-cci.org/?q=node/161 or at doi: 10.5270/esa-ozone_cci-limb_occultation_profiles-2001_2012-v_1-201308
    • …
    corecore