34 research outputs found

    Ecological Niche and Geographic Distribution of Human Monkeypox in Africa

    Get PDF
    Monkeypox virus, a zoonotic member of the genus Orthopoxviridae, can cause a severe, smallpox-like illness in humans. Monkeypox virus is thought to be endemic to forested areas of western and Central Africa. Considerably more is known about human monkeypox disease occurrence than about natural sylvatic cycles of this virus in non-human animal hosts. We use human monkeypox case data from Africa for 1970–2003 in an ecological niche modeling framework to construct predictive models of the ecological requirements and geographic distribution of monkeypox virus across West and Central Africa. Tests of internal predictive ability using different subsets of input data show the model to be highly robust and suggest that the distinct phylogenetic lineages of monkeypox in West Africa and Central Africa occupy similar ecological niches. High mean annual precipitation and low elevations were shown to be highly correlated with human monkeypox disease occurrence. The synthetic picture of the potential geographic distribution of human monkeypox in Africa resulting from this study should support ongoing epidemiologic and ecological studies, as well as help to guide public health intervention strategies to areas at highest risk for human monkeypox

    Assessing the Effectiveness of a Community Intervention for Monkeypox Prevention in the Congo Basin

    Get PDF
    Human monkeypox is a potentially severe illness that begins with a high fever soon followed by the development of a smallpox-like rash. Both monkeypox and smallpox are caused by infection with viruses in the genus Orthopoxvirus. But smallpox, which only affected humans, has been eradicated, whereas monkeypox continues to occur when humans come into contact with infected animals. There are currently no drugs specifically available for the treatment of monkeypox, and the use of vaccines for prevention is limited due to safety concerns. Therefore, monkeypox prevention depends on diminishing human contact with infected animals and preventing person-to-person spread of the virus. The authors describe a film-based method for community outreach intended to increase monkeypox knowledge among residents of communities in the Republic of the Congo. Outreach was performed to ∼23,600 rural Congolese. The effectiveness of the outreach was evaluated using a sample of individuals who attended small-group sessions. The authors found that among the participants, the ability to recognize monkeypox symptoms and the willingness to take ill family members to the hospital was significantly increased after seeing the films. In contrast, the willingness to deter some high-risk behaviors, such as eating animal carcasses found in the forest, remained fundamentally unchanged

    The Phylogenetics and Ecology of the Orthopoxviruses Endemic to North America

    Get PDF
    The data presented herein support the North American orthopoxviruses (NA OPXV) in a sister relationship to all other currently described Orthopoxvirus (OPXV) species. This phylogenetic analysis reaffirms the identification of the NA OPXV as close relatives of “Old World” (Eurasian and African) OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. The natural reservoir host(s) for many of the described OPXV species remains unknown although a clear virus-host association exists between the genus OPXV and several mammalian taxa. The hypothesized host associations and the deep divergence of the OPXV/NA OPXV clades depicted in this study may reflect the divergence patterns of the mammalian faunas of the Old and New World and reflect a more ancient presence of OPXV on what are now the American continents. Genes from the central region of the poxvirus genome are generally more conserved than genes from either end of the linear genome due to functional constraints imposed on viral replication abilities. The relatively slower evolution of these genes may more accurately reflect the deeper history among the poxvirus group, allowing for robust placement of the NA OPXV within Chordopoxvirinae. Sequence data for nine genes were compiled from three NA OPXV strains plus an additional 50 genomes collected from Genbank. The current, gene sequence based phylogenetic analysis reaffirms the identification of the NA OPXV as the nearest relatives of “Old World” OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. Additionally, the substantial genetic distances that separate the currently described NA OPXV species indicate that it is likely that many more undescribed OPXV/NA OPXV species may be circulating among wild animals in North America

    In vitro inhibition of monkeypox virus production and spread by Interferon-β

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Orthopoxvirus </it>genus contains numerous virus species that are capable of causing disease in humans, including variola virus (the etiological agent of smallpox), monkeypox virus, cowpox virus, and vaccinia virus (the prototypical member of the genus). Monkeypox is a zoonotic disease that is endemic in the Democratic Republic of the Congo and is characterized by systemic lesion development and prominent lymphadenopathy. Like variola virus, monkeypox virus is a high priority pathogen for therapeutic development due to its potential to cause serious disease with significant health impacts after zoonotic, accidental, or deliberate introduction into a naïve population.</p> <p>Results</p> <p>The purpose of this study was to investigate the prophylactic and therapeutic potential of interferon-β (IFN-β) for use against monkeypox virus. We found that treatment with human IFN-β results in a significant decrease in monkeypox virus production and spread <it>in vitro</it>. IFN-β substantially inhibited monkeypox virus when introduced 6-8 h post infection, revealing its potential for use as a therapeutic. IFN-β induced the expression of the antiviral protein MxA in infected cells, and constitutive expression of MxA was shown to inhibit monkeypox virus infection.</p> <p>Conclusions</p> <p>Our results demonstrate the successful inhibition of monkeypox virus using human IFN-β and suggest that IFN-β could potentially serve as a novel safe therapeutic for human monkeypox disease.</p

    Wildlife surveillance for emergent disease

    No full text
    corecore