32 research outputs found

    α2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment

    Get PDF
    Slow-onset adaptive changes that arise from sustained antidepressant treatment, such as enhanced adult hippocampal neurogenesis and increased trophic factor expression, play a key role in the behavioral effects of antidepressants. alpha(2)-Adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of alpha(2)-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that alpha(2)-adrenoceptor agonists, clonidine and guanabenz, decrease adult hippocampal neurogenesis through a selective effect on the proliferation, but not the survival or differentiation, of progenitors. These effects persist in dopamine beta-hydroxylase knock-out (Dbh(-/-)) mice lacking norepinephrine, supporting a role for alpha(2)-heteroceptors on progenitor cells, rather than alpha(2)-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the alpha(2)-adrenoceptor subtypes, and decreased neurosphere frequency and BrdU incorporation indicate direct effects of alpha(2)-adrenoceptor stimulation on progenitors. Furthermore, coadministration of the alpha(2)-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation, the morphological maturation of newborn neurons, and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally, short-duration (7 d) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test, which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that alpha(2)-adrenoceptors, expressed by progenitor cells, decrease adult hippocampal neurogenesis, while their blockade speeds up antidepressant action, highlighting their importance as targets for faster acting antidepressants

    Visualization 1: Optically trapping tumor cells to assess differentiation and prognosis of cancers

    No full text
    Real time movie depicting an untreated C6 glioma cell made to approach another. The trap is moved after every (n+5) second where, n= 0, 5, 10, 15 seconds. Cells are allowed to remain in contact till they adhere. Originally published in Biomedical Optics Express on 01 March 2016 (boe-7-3-943

    Visualization 2: Optically trapping tumor cells to assess differentiation and prognosis of cancers

    No full text
    Real-time movie showing how two ATRA-treated C6 glioma cells that, after 4 s contact, remain adhered to each other. Originally published in Biomedical Optics Express on 01 March 2016 (boe-7-3-943

    p75(NTR) independent oligodendrocyte death in cuprizone-induced demyelination in C57BL/6 mice

    No full text
    Feeding C57Bl/6 J mice the copper chelator cuprizone leads to selective apoptosis of mature oligodendrocytes and concomitant demyelination predominantly in the corpus callosum. The process of oligodendrocyte apoptosis in this animal model for multiple sclerosis (MS) involves early microglial activation, but no infiltration of T-lymphocytes. Therefore, this model could mimic early stages of oligodendrocyte degeneration Affected oligodendrocytes express the common neurotrophin receptor, p75(NTR), a 'stress-receptor' which under certain circumstances can induce apoptosis. Only affected oligodendrocytes in MS lesions and MS animal models express this receptor. In order to study the significance of p75(NTR) in the fate of oligodendrocytes, we have exposed wild-type as well as p75(NTR)-knockout mice to a 0.2% (w/w) cuprizone diet and performed a comparative immunohistochemical analysis of the corpus callosum at various time points. Surprisingly, our results show that the absence of p75(NTR) did not alter cuprizone-induced oligodendrocyte death (and subsequent de- or remyelination). Apparently, intracellular apoptosis pathways in adult oligodendrocytes do not require p75(NTR) activated signal transduction in the absence of T-lymphocytes and T-lymphocyte derived cytokines

    Role of neurotrophin receptor p75NTR in mediating neuronal cell death following injury

    No full text
    1. The neurotrophin receptor p75NTR has been shown to mediate neuronal cell death after nerve injury. 2. Down-regulation of p75NTR by antisense oligonucleotides is able to inhibit both sensory and motor neuron death and this treatment is more effective than treatment with growth factors. 3. p75NTR induces cell death by a unique death signalling pathway involving transcription factors (nuclear factor kappa B and c-jun), Bcl-2 family members and caspases
    corecore