9 research outputs found

    Potential role for Human KCTD9 in the autophagy pathway: A novel autophagosome-associated protein

    Get PDF
    KCTD9 belongs to the human potassium channel tetramerization domain (KCTD) family and is of unknown biological function. Our studies in yeast showed that the yeast homologue of KCTD, Whi2, is required to reduce TOR (target of rapamycin) kinase activity, thereby slowing down cell growth and inducing autophagy. Therefore, it was thought that KCTD9 may be associated to autophagosomes and playing a role in inducing autophagy. For the first time, we were able to confirm that KCTD9’s subcellular localization. KCTD9 forms cytoplasmic puncta that fall within the range of the size of autophagosomes. In order to identify these structures, KCTD9 was co-expressed with numerous cellular markers including endosomal and autophagy proteins. KCTD9 puncta did not co-localize with endosomal markers, but co-localized with LC3, a canonical marker of autophagosomes. Furthermore, KCTD9 co-localized with autophagy proteins involved in the nucleation and elongation of the autophagosome - Vps34, Beclin-1, Atg5, and Atg12. While KCTD9 puncta re-localize to LC3 marked structures under starvation conditions, it induces the formation of Vps34 and Atg5 puncta in complete media. Furthermore, KCTD9 associated with the endoplasmic reticulum (ER) suggesting it could be localizing to subdomains of the ER from which autophagosomes derive from. Knockdown of KCTD9 leads to a decrease in the conversion of LC3-I to LC3-II indicating a stall in the autophagy pathway. KCTD9 could be playing a role in the initiation of this pathway by recruiting early autophagy proteins on the ER. Moreover, since it co-localized with E3-ligase Cullin-3 and acts a substrate adaptor, KCTD9 could be recruiting selective autophagic cargo. These results suggest that KCTD9 is a novel autophagosome-associated protein playing a potential role in the induction of the autophagic pathway

    Actinin BioID reveals sarcomere crosstalk with oxidative metabolism through interactions with IGF2BP2.

    Get PDF
    Actinins are strain-sensing actin cross-linkers that are ubiquitously expressed and harbor mutations in human diseases. We utilize CRISPR, pluripotent stem cells, and BioID to study actinin interactomes in human cardiomyocytes. We identify 324 actinin proximity partners, including those that are dependent on sarcomere assembly. We confirm 19 known interactors and identify a network of RNA-binding proteins, including those with RNA localization functions. In vivo and biochemical interaction studies support that IGF2BP2 localizes electron transport chain transcripts to actinin neighborhoods through interactions between its K homology (KH) domain and actinin\u27s rod domain. We combine alanine scanning mutagenesis and metabolic assays to disrupt and functionally interrogate actinin-IGF2BP2 interactions, which reveal an essential role in metabolic responses to pathological sarcomere activation using a hypertrophic cardiomyopathy model. This study expands our functional knowledge of actinin, uncovers sarcomere interaction partners, and reveals sarcomere crosstalk with IGF2BP2 for metabolic adaptation relevant to human disease

    A Contraction Stress Model of Hypertrophic Cardiomyopathy due to Sarcomere Mutations.

    Get PDF
    Thick-filament sarcomere mutations are a common cause of hypertrophic cardiomyopathy (HCM), a disorder of heart muscle thickening associated with sudden cardiac death and heart failure, with unclear mechanisms. We engineered four isogenic induced pluripotent stem cell (iPSC) models of β-myosin heavy chain and myosin-binding protein C3 mutations, and studied iPSC-derived cardiomyocytes in cardiac microtissue assays that resemble cardiac architecture and biomechanics. All HCM mutations resulted in hypercontractility with prolonged relaxation kinetics in proportion to mutation pathogenicity, but not changes in calcium handling. RNA sequencing and expression studies of HCM models identified p53 activation, oxidative stress, and cytotoxicity induced by metabolic stress that can be reversed by p53 genetic ablation. Our findings implicate hypercontractility as a direct consequence of thick-filament mutations, irrespective of mutation localization, and the p53 pathway as a molecular marker of contraction stress and candidate therapeutic target for HCM patients

    Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment.

    Get PDF
    Human cardiac regeneration is limited by low cardiomyocyte replicative rates and progressive polyploidization by unclear mechanisms. To study this process, we engineer a human cardiomyocyte model to track replication and polyploidization using fluorescently tagged cyclin B1 and cardiac troponin T. Using time-lapse imaging, in vitro cardiomyocyte replication patterns recapitulate the progressive mononuclear polyploidization and replicative arrest observed in vivo. Single-cell transcriptomics and chromatin state analyses reveal that polyploidization is preceded by sarcomere assembly, enhanced oxidative metabolism, a DNA damage response, and p53 activation. CRISPR knockout screening reveals p53 as a driver of cell-cycle arrest and polyploidization. Inhibiting sarcomere function, or scavenging ROS, inhibits cell-cycle arrest and polyploidization. Finally, we show that cardiomyocyte engraftment in infarcted rat hearts is enhanced 4-fold by the increased proliferation of troponin-knockout cardiomyocytes. Thus, the sarcomere inhibits cell division through a DNA damage response that can be targeted to improve cardiomyocyte replacement strategies

    Reading Frame Repair of TTN Truncation Variants Restores Titin Quantity and Functions

    No full text
    BACKGROUND: Titin truncation variants (TTNtvs) are the most common inheritable risk factor for dilated cardiomyopathy (DCM), a disease with high morbidity and mortality. The pathogenicity of TTNtvs has been associated with structural localization as A-band variants overlapping myosin heavy chain-binding domains are more pathogenic than I-band variants by incompletely understood mechanisms. Demonstrating why A-band variants are highly pathogenic for DCM could reveal new insights into DCM pathogenesis, titin (TTN) functions, and therapeutic targets. METHODS: We constructed human cardiomyocyte models harboring DCM-associated TTNtvs within A-band and I-band structural domains using induced pluripotent stem cell and CRISPR technologies. We characterized normal TTN isoforms and variant-specific truncation peptides by their expression levels and cardiomyocyte localization using TTN protein gel electrophoresis and immunofluorescence, respectively. Using CRISPR to ablate A-band variant-specific truncation peptides through introduction of a proximal I-band TTNtv, we studied genetic mechanisms in single cardiomyocyte and 3-dimensional, biomimetic cardiac microtissue functional assays. Last, we engineered a full-length TTN protein reporter assay and used next-generation sequencing assays to develop a CRISPR therapeutic for somatic cell genome editing TTNtvs. RESULTS: An A-band TTNtv dose-dependently impaired cardiac microtissue twitch force, reduced full-length TTN levels, and produced abundant TTN truncation peptides. TTN truncation peptides integrated into nascent myofibril-like structures and impaired myofibrillogenesis. CRISPR ablation of TTN truncation peptides using a proximal I-band TTNtv partially restored cardiac microtissue twitch force deficits. Cardiomyocyte genome editing using SpCas9 and a TTNtv-specific guide RNA restored the TTN protein reading frame, which increased full-length TTN protein levels, reduced TTN truncation peptides, and increased sarcomere function in cardiac microtissue assays. CONCLUSIONS: An A-band TTNtv diminished sarcomere function greater than an I-band TTNtv in proportion to estimated DCM pathogenicity. Although both TTNtvs resulted in full-length TTN haploinsufficiency, only the A-band TTNtv produced TTN truncation peptides that impaired myofibrillogenesis and sarcomere function. CRISPR-mediated reading frame repair of the A-band TTNtv restored functional deficits, and could be adapted as a one-and-done genome editing strategy to target ≈30% of DCM-associated TTNtvs

    Reading Frame Repair of TTN Truncation Variants Restores Titin Quantity and Functions.

    No full text
    BACKGROUND: Titin truncation variants (TTNtvs) are the most common inheritable risk factor for dilated cardiomyopathy (DCM), a disease with high morbidity and mortality. The pathogenicity of TTNtvs has been associated with structural localization as A-band variants overlapping myosin heavy chain-binding domains are more pathogenic than I-band variants by incompletely understood mechanisms. Demonstrating why A-band variants are highly pathogenic for DCM could reveal new insights into DCM pathogenesis, titin (TTN) functions, and therapeutic targets. METHODS: We constructed human cardiomyocyte models harboring DCM-associated TTNtvs within A-band and I-band structural domains using induced pluripotent stem cell and CRISPR technologies. We characterized normal TTN isoforms and variant-specific truncation peptides by their expression levels and cardiomyocyte localization using TTN protein gel electrophoresis and immunofluorescence, respectively. Using CRISPR to ablate A-band variant-specific truncation peptides through introduction of a proximal I-band TTNtv, we studied genetic mechanisms in single cardiomyocyte and 3-dimensional, biomimetic cardiac microtissue functional assays. Last, we engineered a full-length TTN protein reporter assay and used next-generation sequencing assays to develop a CRISPR therapeutic for somatic cell genome editing TTNtvs. RESULTS: An A-band TTNtv dose-dependently impaired cardiac microtissue twitch force, reduced full-length TTN levels, and produced abundant TTN truncation peptides. TTN truncation peptides integrated into nascent myofibril-like structures and impaired myofibrillogenesis. CRISPR ablation of TTN truncation peptides using a proximal I-band TTNtv partially restored cardiac microtissue twitch force deficits. Cardiomyocyte genome editing using SpCas9 and a TTNtv-specific guide RNA restored the TTN protein reading frame, which increased full-length TTN protein levels, reduced TTN truncation peptides, and increased sarcomere function in cardiac microtissue assays. CONCLUSIONS: An A-band TTNtv diminished sarcomere function greater than an I-band TTNtv in proportion to estimated DCM pathogenicity. Although both TTNtvs resulted in full-length TTN haploinsufficiency, only the A-band TTNtv produced TTN truncation peptides that impaired myofibrillogenesis and sarcomere function. CRISPR-mediated reading frame repair of the A-band TTNtv restored functional deficits, and could be adapted as a one-and-done genome editing strategy to target ≈30% of DCM-associated TTNtvs

    Development of a Cardiac Sarcomere Functional Genomics Platform to Enable Scalable Interrogation of Human

    No full text
    BACKGROUND: Pathogenic METHODS: We created a toolkit of human induced pluripotent stem cell models and functional assays using CRISPR/Cas9 to study RESULTS: Hypertrophic cardiomyopathy-associated CONCLUSIONS: Our study found that hypertrophic cardiomyopathy-associate

    A Contraction Stress Model of Hypertrophic Cardiomyopathy due to Sarcomere Mutations

    Get PDF
    Summary: Thick-filament sarcomere mutations are a common cause of hypertrophic cardiomyopathy (HCM), a disorder of heart muscle thickening associated with sudden cardiac death and heart failure, with unclear mechanisms. We engineered four isogenic induced pluripotent stem cell (iPSC) models of β-myosin heavy chain and myosin-binding protein C3 mutations, and studied iPSC-derived cardiomyocytes in cardiac microtissue assays that resemble cardiac architecture and biomechanics. All HCM mutations resulted in hypercontractility with prolonged relaxation kinetics in proportion to mutation pathogenicity, but not changes in calcium handling. RNA sequencing and expression studies of HCM models identified p53 activation, oxidative stress, and cytotoxicity induced by metabolic stress that can be reversed by p53 genetic ablation. Our findings implicate hypercontractility as a direct consequence of thick-filament mutations, irrespective of mutation localization, and the p53 pathway as a molecular marker of contraction stress and candidate therapeutic target for HCM patients. : Cohn et al. show that thick-filament sarcomere mutations that cause hypertrophic cardiomyopathy result in hypercontractility in human cardiac microtissues engineered from isogenic iPSCs. These findings illustrate that hypercontractility is independent from changes in calcium handling and mutation location, but results in oxidative stress, p53 activation, and increased p53-dependent cell death with metabolic stress. Keywords: induced pluripotent stem cells, cardiomyopathy, heart failure, tissue engineering, sarcomere function, hypertrophyp53 signalin
    corecore