1,837 research outputs found

    Application of distributed lag and autocorrelated error models to short-run demand analysis

    Get PDF
    The objective of the research reported here was to investigate the usefulness of distributed lag economic models and autocorrelated error statistical models for analysis of monthly and quarterly food demand. Distributed lags are a way of incorporating dynamic considerations into econometric models of consumer demand. In the distributed lag model used here, current consumption is the dependent variable, and lagged consumption is one explanatory variable. Testing the significance of the coefficient of lagged consumption tests the hypothesis of a lag in consumer adjustment to conditions affecting demand. The presence of autocorrelated errors can have serious effects on least squares (L.S.) estimates of coefficients. Autocorrelated errors may frequently occur in equations fitted to monthly and quarterly data. Therefore, equations were estimated by autoregressive least squares (A.L.S.) as well as by least squares. A.L.S.-1 assumes the errors ut to follow a first order autoregressive scheme, ut = β1ut-1 + et. It provides simultaneous estimates of β1 and of the coefficients in the demand equation. A.L.S.-2 assumes the errors to be generated by a second order autoregressive process, ut = β1ut-1 + β2ut-2 + et. It provides simultaneous estimates of β1, β2 and the coefficients in the demand equation

    The efficiencies of generating cluster states with weak non-linearities

    Full text link
    We propose a scalable approach to building cluster states of matter qubits using coherent states of light. Recent work on the subject relies on the use of single photonic qubits in the measurement process. These schemes can be made robust to detector loss, spontaneous emission and cavity mismatching but as a consequence the overhead costs grow rapidly, in particular when considering single photon loss. In contrast, our approach uses continuous variables and highly efficient homodyne measurements. We present a two-qubit scheme, with a simple bucket measurement system yielding an entangling operation with success probability 1/2. Then we extend this to a three-qubit interaction, increasing this probability to 3/4. We discuss the important issues of the overhead cost and the time scaling. This leads to a "no-measurement" approach to building cluster states, making use of geometric phases in phase space.Comment: 21 pages, to appear in special issue of New J. Phys. on "Measurement-Based Quantum Information Processing

    Sortilin, SorCS1b, and SorLA Vps10p sorting receptors, are novel γ-secretase substrates

    Get PDF
    BACKGROUND: The mammalian Vps10p sorting receptor family is a group of 5 type I membrane homologs (Sortilin, SorLA, and SorCS1-3). These receptors bind various cargo proteins via their luminal Vps10p domains and have been shown to mediate a variety of intracellular sorting and trafficking functions. These proteins are highly expressed in the brain. SorLA has been shown to be down regulated in Alzheimer's disease brains, interact with ApoE, and modulate Aβ production. Sortilin has been shown to be part of proNGF mediated death signaling that results from a complex of Sortilin, p75(NTR )and proNGF. We have investigated and provide evidence for γ-secretase cleavage of this family of proteins. RESULTS: We provide evidence that these receptors are substrates for presenilin dependent γ-secretase cleavage. γ-Secretase cleavage of these sorting receptors is inhibited by γ-secretase inhibitors and does not occur in PS1/PS2 knockout cells. Like most γ-secretase substrates, we find that ectodomain shedding precedes γ-secretase cleavage. The ectodomain cleavage is inhibited by a metalloprotease inhibitor and activated by PMA suggesting that it is mediated by an α-secretase like cleavage. CONCLUSION: These data indicate that the α- and γ-secretase cleavages of the mammalian Vps10p sorting receptors occur in a fashion analogous to other known γ-secretase substrates, and could possibly regulate the biological functions of these proteins

    Integrated silicon qubit platform with single-spin addressability, exchange control and robust single-shot singlet-triplet readout

    Get PDF
    Silicon quantum dot spin qubits provide a promising platform for large-scale quantum computation because of their compatibility with conventional CMOS manufacturing and the long coherence times accessible using 28^{28}Si enriched material. A scalable error-corrected quantum processor, however, will require control of many qubits in parallel, while performing error detection across the constituent qubits. Spin resonance techniques are a convenient path to parallel two-axis control, while Pauli spin blockade can be used to realize local parity measurements for error detection. Despite this, silicon qubit implementations have so far focused on either single-spin resonance control, or control and measurement via voltage-pulse detuning in the two-spin singlet-triplet basis, but not both simultaneously. Here, we demonstrate an integrated device platform incorporating a silicon metal-oxide-semiconductor double quantum dot that is capable of single-spin addressing and control via electron spin resonance, combined with high-fidelity spin readout in the singlet-triplet basis.Comment: 10 pages, 4 figure

    KINEMATIC AND KINETIC ANALYSIS OF THE ELITE GOLF SWING

    Get PDF
    The purpose of this study was to determine the association between select biomechanical variables and clubhead speed at impact (CSI) in a sample of elite golfers. Power generation is thought to arise from a number of factors including body rotation and weight shift. CSI is often used to indicate power generation (Fradkin, et al., 2004). We hypothesized that CSI would be highly related to torque, relative hip-shoulder rotation (X-factor) and weight shift during the golf swing

    Fluctuating lattice Boltzmann

    Full text link
    The lattice Boltzmann algorithm efficiently simulates the Navier Stokes equation of isothermal fluid flow, but ignores thermal fluctuations of the fluid, important in mesoscopic flows. We show how to adapt the algorithm to include noise, satisfying a fluctuation-dissipation theorem (FDT) directly at lattice level: this gives correct fluctuations for mass and momentum densities, and for stresses, at all wavevectors kk. Unlike previous work, which recovers FDT only as k→0k\to 0, our algorithm offers full statistical mechanical consistency in mesoscale simulations of, e.g., fluctuating colloidal hydrodynamics.Comment: 7 pages, 3 figures, to appear in Europhysics Letter

    Colloidal electrophoresis: Scaling analysis, Green-Kubo relation, and numerical results

    Full text link
    We consider electrophoresis of a single charged colloidal particle in a finite box with periodic boundary conditions, where added counterions and salt ions ensure charge neutrality. A systematic rescaling of the electrokinetic equations allows us to identify a minimum set of suitable dimensionless parameters, which, within this theoretical framework, determine the reduced electrophoretic mobility. It turns out that the salt-free case can, on the Mean Field level, be described in terms of just three parameters. A fourth parameter, which had previously been identified on the basis of straightforward dimensional analysis, can only be important beyond Mean Field. More complicated behavior is expected to arise when further ionic species are added. However, for a certain parameter regime, we can demonstrate that the salt-free case can be mapped onto a corresponding system containing additional salt. The Green-Kubo formula for the electrophoretic mobility is derived, and its usefulness demonstrated by simulation data. Finally, we report on finite-element solutions of the electrokinetic equations, using the commercial software package COMSOL.Comment: To appear in Journal of Physics: Condensed Matter - special issue on occasion of the CODEF 2008 conferenc

    Nuclear Spins in a Nanoscale Device for Quantum Information Processing

    Get PDF
    Coherent oscillations between any two levels from four nuclear spin states of I=3/2 have been demonstrated in a nanometre-scale NMR semiconductor device, where nuclear spins are all-electrically controlled. Using this device, we discuss quantum logic operations on two fictitious qubits of the I=3/2 system, and propose a quantum state tomography scheme based on the measurement of longitudinal magnetization, MzM_z.Comment: 5 pages, 4 figure
    • …
    corecore