3,226 research outputs found
Spectral energy distributions of quasars selected in the mid-infrared
We present preliminary results on fitting of SEDs to 142 z>1 quasars selected
in the mid-infrared. Our quasar selection finds objects ranging in extinction
from highly obscured, type-2 quasars, through more lightly reddened type-1
quasars and normal type-1s. We find a weak tendency for the objects with the
highest far-infrared emission to be obscured quasars, but no bulk systematic
offset between the far-infrared properties of dusty and normal quasars as might
be expected in the most naive evolutionary schemes. The hosts of the type-2
quasars have stellar masses comparable to those of radio galaxies at similar
redshifts. Many of the type-1s, and possibly one of the type-2s require a very
hot dust component in addition to the normal torus emission.Comment: 4 pages, 2 figures, to appear in the proceedings of The Spectral
Energy Distribution of Galaxies, Preston, September 2011, eds R.J. Tuffs &
C.C. Popesc
The Assembly of the Red Sequence at z ~ 1: The Color and Spectral Properties of Galaxies in the Cl1604 Supercluster
We investigate the properties of the 525 spectroscopically confirmed members of the Cl1604 supercluster at z ~ 0.9 as part of the Observations of Redshift Evolution in Large Scale Environments survey. In particular, we focus on the photometric, stellar mass, morphological, and spectral properties of the 305 member galaxies of the eight clusters and groups that comprise the Cl1604 supercluster. Using an extensive Keck Low-Resolution Imaging Spectrometer (LRIS)/DEep Imaging Multi-Object Spectrograph (DEIMOS) spectroscopic database in conjunction with ten-band ground-based, Spitzer, and Hubble Space Telescope imaging, we investigate the buildup of the red sequence in groups and clusters at high redshift. Nearly all of the brightest and most massive red-sequence galaxies present in the supercluster environment are found to lie within the bounds of the cluster and group systems, with a surprisingly large number of such galaxies present in low-mass group systems. Despite the prevalence of these red-sequence galaxies, we find that the average cluster galaxy has a spectrum indicative of a star-forming galaxy, with a star formation rate between those of z ~ 1 field galaxies and moderate-redshift cluster galaxies. The average group galaxy is even more active, exhibiting spectral properties indicative of a starburst. The presence of massive, red galaxies and the high fraction of starbursting galaxies present in the group environment suggest that significant processing is occurring in group environments at z ~ 1 and earlier. There is a deficit of low-luminosity red-sequence galaxies in all Cl1604 clusters and groups, suggesting that such galaxies transition to the red sequence at later times. Extremely massive (~10^(12)M_☉) red-sequence galaxies routinely observed in rich clusters at z ~ 0 are also absent from the Cl1604 clusters and groups. We suggest that such galaxies form at later times through merging processes. There are significant populations of transition galaxies at intermediate stellar masses (log(M_*)=10.25-10.75) present in the group and cluster environments, suggesting that this range is important for the buildup of the red-sequence mass function at z ~ 1. Through a comparison of the transitional populations present in the Cl1604 cluster and group systems, we find evidence that massive blue-cloud galaxies are quenched earliest in the most dynamically relaxed systems and at progressively later times in dynamically unrelaxed systems
Radio and near-infrared observations of the steep spectrum Galactic plane radio source WKB 0314+57.8
Radio and near-infared observations towards the steep spectrum Galactic plane
radio source WKB 0314+57.8 are presented, in order to clarify the nature of
this source. The radio observations include archival and survey data, together
with new Giant Metrewave Radio Telescope observations at 617 MHz. The
near-infrared observations are in the J and K bands, from the Gemini instrument
on the Shane 3-m telescope. The radio observations show that WKB 0314+57.8 is
extended, with an very steep spectrum (with flux density proportional to
frequency to -2.5 power between 40 MHz and 1.5 GHz). The colour--magnitude
diagram constructed from near-infrared observations of the field suggests the
presence of a z approx 0.08 galaxy cluster behind the Galactic plane, reddened
by about 6 magnitudes of visual extinction. Although the steep spectrum source
has no obvious identification, two other radio sources in the field covered by
the near-infrared observations have tentative identifications with galaxies.
These observations indicate that WKB 0314+57.8 is a relic source in a cluster
of galaxies, not a pulsar.Comment: 6 pages, to appear in MNRAS, typos correcte
A New Measurement of the Stellar Mass Density at z~5: Implications for the Sources of Cosmic Reionization
We present a new measurement of the integrated stellar mass per comoving
volume at redshift 5 determined via spectral energy fitting drawn from a sample
of 214 photometrically-selected galaxies with z'<26.5 in the southern GOODS
field. Following procedures introduced by Eyles et al. (2005), we estimate
stellar masses for various sub-samples for which reliable and unconfused
Spitzer IRAC detections are available. A spectroscopic sample of 14 of the most
luminous sources with =4.92 provides a firm lower limit to the stellar mass
density of 1e6 Msun/Mpc^3. Several galaxies in this sub-sample have masses of
order 10^11 Msun implying significant earlier activity occurred in massive
systems. We then consider a larger sample whose photometric redshifts in the
publicly-available GOODS-MUSIC catalog lie in the range 4.4 <z 5.6. Before
adopting the GOODS-MUSIC photometric redshifts, we check the accuracy of their
photometry and explore the possibility of contamination by low-z galaxies and
low-mass stars. After excising probable stellar contaminants and using the z'-J
color to exclude any remaining foreground red galaxies, we conclude that 196
sources are likely to be at z~5. The implied mass density from the unconfused
IRAC fraction of this sample, scaled to the total available, is 6e6 Msun/Mpc^3.
We discuss the uncertainties as well as the likelihood that we have
underestimated the true mass density. Including fainter and quiescent sources
the total integrated density could be as high as 1e7 Msun/Mpc^3. Using the
currently available (but highly uncertain) rate of decline in the star
formationhistory over 5 <z< 10, a better fit is obtained for the assembled mass
at z~5 if we admit significant dust extinction at early times or extend the
luminosity function to very faint limits. [abridged]Comment: Accepted for Publication in ApJ, 39 page
A subarcsecond near-infrared view of massive galaxies at z > 1 with Gemini Multiconjugate Adaptive Optics
We present images taken using the Gemini South Adaptive Optics Imager (GSAOI)
with the Gemini Multiconjugate Adaptive Optics System (GeMS) in three 2
arcmin fields in the Spitzer Extragalactic Representative Volume Survey.
These GeMS/GSAOI observations are among the first resolution
data in the near-infrared spanning extragalactic fields exceeding
in size. We use these data to estimate galaxy sizes, obtaining
results similar to those from studies with the Hubble Space Telescope, though
we find a higher fraction of compact star forming galaxies at . To
disentangle the star-forming galaxies from active galactic nuclei (AGN), we use
multiwavelength data from surveys in the optical and infrared, including
far-infrared data from Herschel, as well as new radio continuum data from the
Australia Telescope Compact Array and Very Large Array. We identify
ultraluminous infrared galaxies (ULIRGs) at , which consist of a
combination of pure starburst galaxies and Active Galactic Nuclei
(AGN)/starburst composites. The ULIRGs show signs of recent merger activity,
such as highly disturbed morphologies and include a rare candidate triple AGN.
We find that AGN tend to reside in hosts with smaller scale sizes than purely
star-forming galaxies of similar infrared luminosity. Our observations
demonstrate the potential for MCAO to complement the deeper galaxy surveys to
be made with the James Webb Space Telescope.Comment: 20 pages, AJ, in pres
How Accurate Are Population Models? Lessons From Landscape-Scale Tests In A Fragmented System
There is a growing debate about the ability of Population Viability Analysis (PVA) to predict the risk of extinction. Previously, the debate has focused largely on models where spatial variation and species movement are ignored. We present a synthesis of the key results for an array of different species for which detailed tests of the accuracy of PVA models were completed. These models included spatial variation in habitat quality and the movement of individuals across a landscape. The models were good approximations for some species, but poor for others. Predictive ability was limited by complex processes typically overlooked in spatial population models, these being interactions between landscape structure and life history attributes. Accuracy of models could not be determined a priori, although model tests indicated how they might be improved. Importantly, model predictions were poor for some species that are among the best studied vertebrates in Australia. This indicated that although the availability of good life history data is a key part of PVA other factors also influence model accuracy. We were also able to draw broad conclusions about the sorts of populations and life history characteristics where model predictions are likely to be less accurate. Predictions of extinction risk are often essential for real-world population management. Therefore, we believe that although PVA has been shown to be less than perfect, it remains a useful tool particularly in the absence of alternative approaches. Hence, tests of PVA models should be motivated by the cycle of testing and improvement
The Infrared Array Camera Dark Field: Far-Infrared to X-ray Data
We present 20 band photometry from the far-IR to X-ray in the Spitzer Infrared Array Camera (IRAC) dark field. The bias for the near-IR camera on Spitzer is calibrated by observing a ~20' diameter "dark" field near the north ecliptic pole roughly every two-to-three weeks throughout the mission duration of Spitzer. The field is unique for its extreme depth, low background, high quality imaging, time-series information, and accompanying photometry including data taken with Akari, Palomar, MMT, KPNO, Hubble, and Chandra. This serendipitous survey contains the deepest mid-IR data taken to date. This data set is well suited for studies of intermediate-redshift galaxy clusters, high-redshift galaxies, the first generation of stars, and the lowest mass brown dwarfs, among others. This paper provides a summary of the data characteristics and catalog generation from all bands collected to date as well as a discussion of photometric redshifts and initial and expected science results and goals. To illustrate the scientific potential of this unique data set, we also present here IRAC color-color diagrams
Signatures of Young Star Formation Activity Within Two Parsecs of Sgr A*
We present radio and infrared observations indicating on-going star formation
activity inside the pc circumnuclear ring at the Galactic center.
Collectively these measurements suggest a continued disk-based mode of on-going
star formation has taken place near Sgr A* over the last few million years.
First, VLA observations with spatial resolution 2.17 reveal 13
water masers, several of which have multiple velocity components. The presence
of interstellar water masers suggests gas densities that are sufficient for
self-gravity to overcome the tidal shear of the 4 \msol\, black
hole. Second, SED modeling of stellar sources indicate massive YSO candidates
interior to the molecular ring, supporting in-situ star formation near Sgr A*
and appear to show a distribution similar to that of the counter-rotating disks
of 100 OB stars orbiting Sgr A*. Some YSO candidates (e.g., IRS~5) have
bow shock structures suggesting that they have have gaseous disks that are
phototoevaporated and photoionized by the strong radiation field. Third, we
detect clumps of SiO (2-1) and (5-4) line emission in the ring based on CARMA
and SMA observations. The FWHM and luminosity of the SiO emission is consistent
with shocked protostellar outflows. Fourth, two linear ionized features with an
extent of pc show blue and redshifted velocities between and
\kms, suggesting protostellar jet driven outflows with mass loss rates of
solar mass yr. Finally, we present the imprint of
radio dark clouds at 44 GHz, representing a reservoir of molecular gas that
feeds star formation activity close to Sgr A*.Comment: 38 pages, 10 figures, ApJ (in press
Design of the Spitzer Space Telescope Heritage Archive
It is predicted that Spitzer Space Telescope’s cryogen will run out in April 2009, and the final reprocessing for the cryogenic mission is scheduled to end in April 2011, at which time the Spitzer archive will be transferred to the NASA/IPAC Infrared Science Archive (IRSA) for long-term curation. The Spitzer Science Center (SSC) and IRSA are collaborating to design and deploy the Spitzer Heritage Archive (SHA), which will supersede the current Spitzer archive. It will initially contain the raw and final reprocessed cryogenic science products, and will eventually incorporate the final products from the Warm mission. The SHA will be accompanied by tools deemed necessary to extract the full science content of the archive and by comprehensive documentation
- …
