7,275 research outputs found

    Using datasets from the Internet for hydrological modeling: an example from the Kntnk Menderes Basin, Turkey

    Get PDF
    River basin development / Water resources / Data collection / Models / Hydrology / Land classification / Water management / Water scarcity / Water allocation / Stream flow / Water demand / Turkey / Kntnk Menderes Basin

    Graphene in periodically alternating magnetic field: unusual quantization of the anomalous Hall effect

    Full text link
    We study the energy spectrum and electronic properties of graphene in a periodic magnetic field of zero average with a symmetry of triangular lattice. The periodic field leads to formation of a set of minibands separated by gaps, which can be manipulated by external field. The Berry phase, related to the motion of electrons in kk space, and the corresponding Chern numbers characterizing topology of the energy bands are calculated analytically and numerically. In this connection, we discuss the anomalous Hall effect in the insulating state, when the Fermi level is located in the minigap. The results of calculations show that in the model of gapless Dirac spectrum of graphene the anomalous Hall effect can be treated as a sum of fractional quantum numbers, related to the nonequivalent Dirac points.Comment: 6 pages, 5 figure

    Magnetoresistance and collective Coulomb blockade in super-lattices of ferromagnetic CoFe nanoparticles

    Full text link
    We report on transport properties of millimetric super-lattices of CoFe nanoparticles surrounded by organic ligands. R(T)s follow R(T) = R_0.exp(T/T_0)^0.5 with T_0 ranging from 13 to 256 K. At low temperature I(V)s follow I=K[(V-V_T)/V_T]^ksi with ksi ranging 3.5 to 5.2. I(V) superpose on a universal curve when shifted by a voltage proportional to the temperature. Between 1.8 and 10 K a high-field magnetoresistance with large amplitude and a strong voltage-dependence is observed. Its amplitude only depends on the magnetic field/temperature ratio. Its origin is attributed to the presence of paramagnetic states present at the surface or between the nanoparticles. Below 1.8 K, this high-field magnetoresistance abruptly disappears and inverse tunnelling magnetoresistance is observed, the amplitude of which does not exceed 1%. At this low temperature, some samples display in their I(V) characteristics abrupt and hysteretic transitions between the Coulomb blockade regime and the conductive regime. The increase of the current during these transitions can be as high as a factor 30. The electrical noise increases when the sample is near the transition. The application of a magnetic field decreases the voltage at which these transitions occur so magnetic-field induced transitions are also observed. Depending on the applied voltage, the temperature and the amplitude of the magnetic field, the magnetic-field induced transitions are either reversible or irreversible. These abrupt and hysteretic transitions are also observed in resistance-temperature measurements. They could be the soliton avalanches predicted by Sverdlov et al. [Phys. Rev. B 64, 041302 (R), 2001] or could also be interpreted as a true phase transition between a Coulomb glass phase to a liquid phase of electrons

    Density-matrix functionals for pairing in mesoscopic superconductors

    Full text link
    A functional theory based on single-particle occupation numbers is developed for pairing. This functional, that generalizes the BCS approach, directly incorporates corrections due to particle number conservation. The functional is benchmarked with the pairing Hamiltonian and reproduces perfectly the energy for any particle number and coupling.Comment: 4 pages, 4 figures, revised versio

    Anomalous Hall Effect due to the spin chirality in the Kagom\'{e} lattice

    Full text link
    We consider a model for a two dimensional electron gas moving on a kagom\'{e} lattice and locally coupled to a chiral magnetic texture. We show that the transverse conductivity σ_xy\sigma\_{xy} does not vanish even if spin-orbit coupling is not present and it may exhibit unusual behavior. Model parameters are the chirality, the number of conduction electrons and the amplitude of the local coupling. Upon varying these parameters, a topological transition characterized by change of the band Chern numbers occur. As a consequence, σ_xy\sigma\_{xy} can be quantized, proportional to the chirality or have a non monotonic behavior upon varying these parameters.Comment: 8 pages, 7 figure

    Functional approach for pairing in finite systems: How to define restoration of broken symmetries in Energy Density Functional theory ?

    Full text link
    The Multi-Reference Energy Density Functional (MR-EDF) approach (also called configuration mixing or Generator Coordinate Method), that is commonly used to treat pairing in finite nuclei and project onto particle number, is re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can be interpreted as a functional of the one-body density matrix of the projected state with good particle number. Based on this observation, we propose a new approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and restoration of symmetry are accounted for simultaneously. We show, that such an approach is free from pathologies recently observed in MR-EDF and can be used with a large flexibility on the density dependence of the functional.Comment: proceeding of the conference "Many body correlations from dilute to dense Nuclear systems", Paris, February 201

    Transport Model Simulations of Projectile Fragmentation Reactions at 140 MeV/nucleon

    Full text link
    The collisions in four different reaction systems using 40,48^{40,48}Ca and 58,64^{58,64}Ni isotope beams and a Be target have been simulated using the Heavy Ion Phase Space Exploration and the Antisymmetrized Molecular Dynamics models. The present study mainly focuses on the model predictions for the excitation energies of the hot fragments and the cross sections of the final fragments produced in these reactions. The effects of various factors influencing the final fragment cross sections, such as the choice of the statistical decay code and its parameters have been explored. The predicted fragment cross sections are compared to the projectile fragmentation cross sections measured with the A1900 mass separator. At E/A=140E/A=140 MeV, reaction dynamics can significantly modify the detection efficiencies for the fragments and make them different from the efficiencies applied to the measured data reported in the previous work. The effects of efficiency corrections on the validation of event generator codes are discussed in the context of the two models.Comment: 28 pages, 13 figure

    Description of Pairing correlation in Many-Body finite systems with density functional theory

    Full text link
    Different steps leading to the new functional for pairing based on natural orbitals and occupancies proposed in ref. [D. Lacroix and G. Hupin, arXiv:1003.2860] are carefully analyzed. Properties of quasi-particle states projected onto good particle number are first reviewed. These properties are used (i) to prove the existence of such a functional (ii) to provide an explicit functional through a 1/N expansion starting from the BCS approach (iii) to give a compact form of the functional summing up all orders in the expansion. The functional is benchmarked in the case of the picked fence pairing Hamiltonian where even and odd systems, using blocking technique are studied, at various particle number and coupling strength, with uniform and random single-particle level spacing. In all cases, a very good agreement is found with a deviation inferior to 1% compared to the exact energy.Comment: 14 pages, 9 figure

    Kondo Screening and Magnetic Ordering in Frustrated UNi4B

    Full text link
    UNi4B exhibits unusual properties and, in particular, a unique antiferromagnetic arrangement involving only 2/3 of the U sites. Based on the low temperature behavior of this compound, we propose that the remaining 1/3 U sites are nonmagnetic due to the Kondo effect. We derive a model in which the coexistence of magnetic and nonmagnetic U sites is the consequence of the competition between frustration of the crystallographic structure and instability of the 5f moments.Comment: 4 pages, 2 figure

    Out of equilibrium transport through an Anderson impurity: Probing scaling laws within the equation of motion approach

    Full text link
    We study non-equilibrium electron transport through a quantum impurity coupled to metallic leads using the equation of motion technique at finite temperature T. Assuming that the interactions are taking place solely in the impurity and focusing in the infinite Hubbard limit, we compute the out of equilibrium density of states and the differential conductance G_2(T,V) to test several scaling laws. We find that G_2(T,V)/G_2(T,0) is a universal function of both eV/T_K and T/T_K, being T_K the Kondo temperature. The effect of an in plane magnetic field on the splitting of the zero bias anomaly in the differential conductance is also analyzed. For a Zeeman splitting \Delta, the computed differential conductance peak splitting depends only on \Delta/T_K, and for large fields approaches the value of 2\Delta . Besides the traditional two leads setup, we also consider other configurations that mimics recent experiments, namely, an impurity embedded in a mesoscopic wire and the presence of a third weakly coupled lead. In these cases, a double peak structure of the Kondo resonance is clearly obtained in the differential conductance while the amplitude of the highest peak is shown to decrease as \ln(eV/T_K). Several features of these results are in qualitative agreement with recent experimental observations reported on quantum dots.Comment: 9 pages, 7 figure
    • 

    corecore