8,503 research outputs found
A Lee-Yang--inspired functional with a density--dependent neutron-neutron scattering length
Inspired by the low--density Lee-Yang expansion for the energy of a dilute
Fermi gas of density and momentum , we introduce here a
Skyrme--type functional that contains only -wave terms and provides, at the
mean--field level, (i) a satisfactory equation of state for neutron matter from
extremely low densities up to densities close to the equilibrium point, and
(ii) a good--quality equation of state for symmetric matter at density scales
around the saturation point. This is achieved by using a density--dependent
neutron-neutron scattering length ) which satisfies the low--density
limit (for Fermi momenta going to zero) and has a density dependence tuned in
such a way that the low--density constraint is satisfied
at all density scales.Comment: 5 figure
From dilute matter to the equilibrium point in the energy--density--functional theory
Due to the large value of the scattering length in nuclear systems, standard
density--functional theories based on effective interactions usually fail to
reproduce the nuclear Fermi liquid behavior both at very low densities and
close to equilibrium. Guided on one side by the success of the Skyrme density
functional and, on the other side, by resummation techniques used in Effective
Field Theories for systems with large scattering lengths, a new energy--density
functional is proposed. This functional, adjusted on microscopic calculations,
reproduces the nuclear equations of state of neutron and symmetric matter at
various densities. Furthermore, it provides reasonable saturation properties as
well as an appropriate density dependence for the symmetry energy.Comment: 4 figures, 2 table
A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles
We describe a low-cost and simple setup for hyperthermia measurements on
colloidal solutions of magnetic nanoparticles (ferrofluids) with a
frequency-adjustable magnetic field in the range 5-500 kHz produced by an
electromagnet. By optimizing the general conception and each component (nature
of the wires, design of the electromagnet), a highly efficient setup is
obtained. For instance, in a useful gap of 1.1 cm, a magnetic field of 4.8 mT
is generated at 100 kHz and 500 kHz with an output power of 3.4 W and 75 W,
respectively. A maximum magnetic field of 30 mT is obtained at 100 kHz. The
temperature of the colloidal solution is measured using optical fiber sensors.
To remove contributions due to heating of the electromagnet, a differential
measurement is used. In this configuration the sensitivity is better than 1.5
mW at 100 kHz and 19.3 mT. This setup allows one to measure weak heating powers
on highly diluted colloidal solutions. The hyperthermia characteristics of a
solution of Fe nanoparticles are described, where both the magnetic field and
the frequency dependence of heating power have been measured
Density-matrix functionals for pairing in mesoscopic superconductors
A functional theory based on single-particle occupation numbers is developed
for pairing. This functional, that generalizes the BCS approach, directly
incorporates corrections due to particle number conservation. The functional is
benchmarked with the pairing Hamiltonian and reproduces perfectly the energy
for any particle number and coupling.Comment: 4 pages, 4 figures, revised versio
Anomalous Hall Effect due to the spin chirality in the Kagom\'{e} lattice
We consider a model for a two dimensional electron gas moving on a kagom\'{e}
lattice and locally coupled to a chiral magnetic texture. We show that the
transverse conductivity does not vanish even if spin-orbit
coupling is not present and it may exhibit unusual behavior. Model parameters
are the chirality, the number of conduction electrons and the amplitude of the
local coupling. Upon varying these parameters, a topological transition
characterized by change of the band Chern numbers occur. As a consequence,
can be quantized, proportional to the chirality or have a non
monotonic behavior upon varying these parameters.Comment: 8 pages, 7 figure
Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime
We report on the magnetic and hyperthermia properties of iron nanoparticles
synthesized by organometallic chemistry. They are 5.5 nm in diameter and
display a saturation magnetization close to the bulk one. Magnetic properties
are dominated by the contribution of aggregates of nanoparticles with respect
to individual isolated nanoparticles. Alternative susceptibility measurements
are been performed on a low interacting system obtained after eliminating the
aggregates by centrifugation. A quantitative analysis using the Gittleman s
model allow a determination of the effective anisotropy Keff = 1.3 * 10^5
J.m^{-3}, more than two times the magnetocristalline value of bulk iron.
Hyperthermia measurements are performed on agglomerates of nanoparticles at a
magnetic field up to 66 mT and at frequencies in the range 5-300 kHz. Maximum
measured SAR is 280 W/g at 300 kHz and 66 mT. Specific absorption rate (SAR)
displays a square dependence with the magnetic field below 30 mT but deviates
from this power law at higher value. SAR is linear with the applied frequency
for mu_0H=19 mT. The deviations from the linear response theory are discussed.
A refined estimation of the optimal size of iron nanoparticles for hyperthermia
applications is provided using the determined effective anisotropy value
Magnetoresistance and collective Coulomb blockade in super-lattices of ferromagnetic CoFe nanoparticles
We report on transport properties of millimetric super-lattices of CoFe
nanoparticles surrounded by organic ligands. R(T)s follow R(T) =
R_0.exp(T/T_0)^0.5 with T_0 ranging from 13 to 256 K. At low temperature I(V)s
follow I=K[(V-V_T)/V_T]^ksi with ksi ranging 3.5 to 5.2. I(V) superpose on a
universal curve when shifted by a voltage proportional to the temperature.
Between 1.8 and 10 K a high-field magnetoresistance with large amplitude and a
strong voltage-dependence is observed. Its amplitude only depends on the
magnetic field/temperature ratio. Its origin is attributed to the presence of
paramagnetic states present at the surface or between the nanoparticles. Below
1.8 K, this high-field magnetoresistance abruptly disappears and inverse
tunnelling magnetoresistance is observed, the amplitude of which does not
exceed 1%. At this low temperature, some samples display in their I(V)
characteristics abrupt and hysteretic transitions between the Coulomb blockade
regime and the conductive regime. The increase of the current during these
transitions can be as high as a factor 30. The electrical noise increases when
the sample is near the transition. The application of a magnetic field
decreases the voltage at which these transitions occur so magnetic-field
induced transitions are also observed. Depending on the applied voltage, the
temperature and the amplitude of the magnetic field, the magnetic-field induced
transitions are either reversible or irreversible. These abrupt and hysteretic
transitions are also observed in resistance-temperature measurements. They
could be the soliton avalanches predicted by Sverdlov et al. [Phys. Rev. B 64,
041302 (R), 2001] or could also be interpreted as a true phase transition
between a Coulomb glass phase to a liquid phase of electrons
Transport Model Simulations of Projectile Fragmentation Reactions at 140 MeV/nucleon
The collisions in four different reaction systems using Ca and
Ni isotope beams and a Be target have been simulated using the Heavy
Ion Phase Space Exploration and the Antisymmetrized Molecular Dynamics models.
The present study mainly focuses on the model predictions for the excitation
energies of the hot fragments and the cross sections of the final fragments
produced in these reactions. The effects of various factors influencing the
final fragment cross sections, such as the choice of the statistical decay code
and its parameters have been explored. The predicted fragment cross sections
are compared to the projectile fragmentation cross sections measured with the
A1900 mass separator. At MeV, reaction dynamics can significantly
modify the detection efficiencies for the fragments and make them different
from the efficiencies applied to the measured data reported in the previous
work. The effects of efficiency corrections on the validation of event
generator codes are discussed in the context of the two models.Comment: 28 pages, 13 figure
Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behaviour and large losses
We report on hyperthermia measurements on a colloidal solution of 15 nm
monodisperse FeCo nanoparticles (NPs). Losses as a function of the magnetic
field display a sharp increase followed by a plateau, which is what is expected
for losses of ferromagnetic single-domain NPs. The frequency dependence of the
coercive field is deduced from hyperthermia measurement and is in quantitative
agreement with a simple model of non-interacting NPs. The measured losses (1.5
mJ/g) compare to the highest of the literature, though the saturation
magnetization of the NPs is well below the bulk one.Comment: 14 pages, 3 figure
- âŠ