988 research outputs found

    Effect of pairing on one- and two-nucleon transfer below the Coulomb barrier: a time-dependent microscopic description

    Full text link
    The effect of pairing correlation on transfer reaction below the Coulomb barrier is investigated qualitatively and quantitatively using a simplified version of the Time-Dependent Hartree-Fock + BCS approach. The effect of particle number symmetry breaking on the description of reaction and dedicated methods to extract one and two-nucleon transfer probabilities (P_{1n} and P_{2n}) in a particle number symmetry breaking approach are discussed. Influence of pairing is systematically investigated in the ^{40}Ca+ ^{40,42,44,46,48,50}Ca reactions. A strong enhancement of the two-particle transfer probabilities due to initial pairing correlations is observed. This enhancement induces an increase of the ratio of probabilities P_{2n} / (P_{1n})^2 compared to the case with no pairing. It is shown that this ratio increases strongly as the center of mass energy decreases with a value that could be larger than ten in the deep sub-barrier regime. An analysis of the pair transfer sensitivity to the type of pairing interaction, namely surface, mixed or volume, used in the theory is made. It is found that the pair transfer is globally insensitive to the type of force and mainly depends on the pairing interaction strength.Comment: 12 pages, 10 figure

    Systematic of isovector and isoscalar giant quadrupole resonances in normal and superfluid spherical nuclei

    Full text link
    The isoscalar (IS) and isovector (IV) quadrupole responses of nuclei are systematically investigated using the time-dependent Skyrme Energy Density Functional including pairing in the BCS approximation. Using two different Skyrme functionals, Sly4 and SkM*, respectively 263 and 304 nuclei have been found to be spherical along the nuclear charts. The time-dependent evolution of these nuclei has been systematically performed giving access to their quadrupole responses. It is shown that the mean-energy of the collective high energy state globally reproduces the experimental IS and IV collective energy but fails to reproduce their lifetimes. It is found that the mean collective energy depends rather significantly on the functional used in the mean-field channel. Pairing by competing with parity effects can slightly affect the collective response around magic numbers and induces a reduction of the collective energy compared to the average trend. Low-lying states, that can only be considered if pairing is included, are investigated. While the approach provides a fair estimate of the low lying state energy, it strongly underestimates the transition rate B(E2)B(E2). Finally, the possibility to access to the density dependence of the symmetry energy through parallel measurements of both the IS- and IV-GQR is discussed.Comment: 14 pages, 19 figure

    Systematic of isovector and isoscalar giant quadrupole resonances in normal and superfluid deformed nuclei

    Full text link
    The systematic study of isoscalar (IS) and isovector (IV) giant quadrupole responses (GQR) in normal and superfluid nuclei presented in [G. Scamps and D. Lacroix, Phys. Rev. 88, 044310 (2013)] is extended to the case of axially deformed and triaxial nuclei. The static and dynamical energy density functional based on Skyrme effective interaction are used to study static properties and dynamical response functions over the whole nuclear chart. Among the 749 nuclei that are considered, 301 and 65 are respectively found to be prolate and oblate while 54 do not present any symmetry axis. For these nuclei, the IS- and IV-GQR response functions are systematically obtained. In these nuclei, different aspects related to the interplay between deformation and collective motion are studied. We show that some aspects like the fragmentation of the response induced by deformation effects in axially symmetric and triaxial nuclei can be rather well understood using simple arguments. Besides this simplicity, more complex effects show up like the appearance of non-trivial deformation effects on the collective motion damping or the influence of hexadecapole or higher-orders effects. A specific study is made on the triaxial nuclei where the absence of symmetry axis adds further complexity to the nuclear response. The relative importance of geometric deformation effects and coupling to other vibrational modes are discussed.Comment: 17 pages, 26 figure

    Beyond mean-field calculation for pairing correlation

    Full text link
    The recently proposed Symmetry-Conserving Energy Density Functional approach [G. Hupin, D. Lacroix and M. Bender, Phys. Rev. C84, 014309 (2011)] is applied to perform Variation After Projection onto good particle number using Skyrme interaction, including density dependent terms. We present a systematic study of the Kr and Sn isotopic chains. This approach leads to non-zero pairing in magic nuclei and a global enhancement of the pairing gap compared to the original theory that breaks the particle number symmetry. The need to consistently readjust the pairing effective interaction strength is discussed.Comment: 7 pages, 9 figure

    Density functional for pairing with particle number conservation

    Full text link
    In this work, a new functional is introduced to treat pairing correlations in finite many-body systems. Guided by the projected BCS framework, the energy is written as a functional of occupation numbers. It is shown to generalize the BCS approach and to provide an alternative to Variation After Projection framework. Illustrations of the new approach are given for the pairing Hamiltonian for various particle numbers and coupling strengths. In all case, a very good agreement with the exact solution is found.Comment: Proceeding of the International Symposium: Forefronts of Researches in Exotic Nuclear Structures- Niigata201

    Collectivity in small and large amplitude microscopic mean-field dynamic

    Full text link
    The time-dependent energy density functional with pairing allows to describe a large variety of phenomena from small to large amplitude collective motion. Here, we briefly summarize the recent progresses made in the field using the TD-BCS approach. A focus is made on the mapping of the microscopic mean-field dynamic to the macroscopic dynamic in collective space. A method is developed to extract the collective mass parameter from TD-EDF. Illustration is made on the fission of 258^{258}Fm. The collective mass and collective momentum associated to quadrupole deformation including non-adiabatic effects is estimated along the TD-EDF path. With these information, the onset of dissipation during fission is discussed.Comment: Proceeding of the XXII Nuclear Physics Workshop, Kazimierz, 2015, Polan

    On the formulation of functional theory for pairing with particle number restoration

    Full text link
    The restoration of particle number within Energy Density Functional theory is analyzed. It is shown that the standard method based on configuration mixing leads to a functional of both the projected and non-projected densities. As an alternative that might be advantageous for mass models, nuclear dynamics and thermodynamics, we propose to formulate the functional in terms directly of the one-body and two-body density matrices of the state with good particle number. Our approach does not contain the pathologies recently observed when restoring the particle number in an Energy Density Functional framework based on transition density matrices and can eventually be applied with functionals having arbitrary density dependencies.Comment: 11 pages, 3 figure

    Dynamical description of the fission process using the TD-BCS theory

    Full text link
    The description of fission remains a challenge for nuclear microscopic theories. The time-dependent Hartree-Fock approach with BCS pairing is applied to study the last stage of the fission process. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.Comment: 4 pages, 3 figures, Submitted as AIP Conference Proceeings for NSD2015, Portoroz, Sloveni

    Collective aspects deduced from time-dependent microscopic mean-field with pairing: application to the fission process

    Full text link
    Given a set of collective variables, a method is proposed to obtain the associated conjugated collective momenta and masses starting from a microscopic time-dependent mean-field theory. The construction of pairs of conjugated variables is the first step to bridge microscopic and macroscopic approaches. The method is versatile and can be applied to study a large class of nuclear processes. An illustration is given here with the fission of 258^{258}Fm. Using the quadrupole moment and eventually higher-order multipole moments, the associated collective masses are estimated along the microscopic mean-field evolution. When more than one collective variable are considered, it is shown that the off-diagonal matrix elements of the inertia play a crucial role. Using the information on the quadrupole moment and associated momentum, the collective evolution is studied. It is shown that dynamical effects beyond the adiabatic limit are important. Nuclei formed after fission tend to stick together for longer time leading to a dynamical scission point at larger distance between nuclei compared to the one anticipated from the adiabatic energy landscape. The effective nucleus-nucleus potential felt by the emitted nuclei is finally extracted.Comment: 12 pages, 9 figure

    Microscopic description of large amplitude collective motion in the nuclear astrophysics context

    Full text link
    In the last 10 years, we have observed an important increase of interest in the application of time-dependent energy density functional theory (TD-EDF). This approach allows to treat nuclear structure and nuclear reaction from small to large amplitude dynamics in a unified framework. The possibility to perform unrestricted three-dimensional simulations using state of the art effective interactions has opened new perspectives. In the present article, an overview of applications where the predictive power of TD-EDF has been benchmarked is given. A special emphasize is made on processes that are of astrophysical interest. Illustrations discussed here include giant resonances, fission, binary and ternary collisions leading to fusion, transfer and deep inelastic processes.Comment: To appear in a special issue of IJMPE on "Collectivity in Nuclei, Neutrinos, and Neutron Stars
    corecore