25 research outputs found

    Calyculin A, an enhancer of myosin, speeds up anaphase chromosome movement

    Get PDF
    Actin and myosin inhibitors often blocked anaphase movements in insect spermatocytes in previous experiments. Here we treat cells with an enhancer of myosin, Calyculin A, which inhibits myosin-light-chain phosphatase from dephosphorylating myosin; myosin thus is hyperactivated. Calyculin A causes anaphase crane-fly spermatocyte chromosomes to accelerate poleward; after they reach the poles they often move back toward the equator. When added during metaphase, chromosomes at anaphase move faster than normal. Calyculin A causes prometaphase chromosomes to move rapidly up and back along the spindle axis, and to rotate. Immunofluorescence staining with an antibody against phosphorylated myosin regulatory light chain (p-squash) indicated increased phosphorylation of cleavage furrow myosin compared to control cells, indicating that calyculin A indeed increased myosin phosphorylation. To test whether the Calyculin A effects are due to myosin phosphatase or to type 2 phosphatases, we treated cells with okadaic acid, which inhibits protein phosphatase 2A at concentrations similar to Calyculin A but requires much higher concentrations to inhibit myosin phosphatase. Okadaic acid had no effect on chromosome movement. Backward movements did not require myosin or actin since they were not affected by 2,3-butanedione monoxime or LatruculinB. Calyculin A affects the distribution and organization of spindle microtubules, spindle actin, cortical actin and putative spindle matrix proteins skeletor and titin, as visualized using immunofluorescence. We discuss how accelerated and backwards movements might arise

    Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphatidylinositol 4,5-bisphosphate (PIP<sub>2</sub>) is required for successful completion of cytokinesis. In addition, both PIP<sub>2 </sub>and phosphoinositide-specific phospholipase C (PLC) have been localized to the cleavage furrow of dividing mammalian cells. PLC hydrolyzes PIP<sub>2 </sub>to yield diacylglycerol (DAG) and inositol trisphosphate (IP<sub>3</sub>), which in turn induces calcium (Ca<sup>2+) </sup>release from the ER. Several studies suggest PIP<sub>2 </sub>must be hydrolyzed continuously for continued cleavage furrow ingression. The majority of these studies employ the N-substituted maleimide U73122 as an inhibitor of PLC. However, the specificity of U73122 is unclear, as its active group closely resembles the non-specific alkylating agent N-ethylmaleimide (NEM). In addition, the pathway by which PIP<sub>2 </sub>regulates cytokinesis remains to be elucidated.</p> <p>Results</p> <p>Here we compared the effects of U73122 and the structurally unrelated PLC inhibitor ET-18-OCH<sub>3 </sub>(edelfosine) on cytokinesis in crane-fly and <it>Drosophila </it>spermatocytes. Our data show that the effects of U73122 are indeed via PLC because U73122 and ET-18-OCH<sub>3 </sub>produced similar effects on cell morphology and actin cytoskeleton organization that were distinct from those caused by NEM. Furthermore, treatment with the myosin light chain kinase (MLCK) inhibitor ML-7 caused cleavage furrow regression and loss of both F-actin and phosphorylated myosin regulatory light chain from the contractile ring in a manner similar to treatment with U73122 and ET-18-OCH<sub>3</sub>.</p> <p>Conclusion</p> <p>We have used multiple inhibitors to examine the roles of PLC and MLCK, a predicted downstream target of PLC regulation, in cytokinesis. Our results are consistent with a model in which PIP<sub>2 </sub>hydrolysis acts via Ca<sup>2+ </sup>to activate myosin via MLCK and thereby control actin dynamics during constriction of the contractile ring.</p

    Titin in insect spermatocyte spindle fibers associates with microtubules, actin, myosin and the matrix proteins skeletor, megator and chromator

    Get PDF
    Titin, the giant elastic protein found in muscles, is present in spindles of crane-fly and locust spermatocytes as determined by immunofluorescence staining using three antibodies, each raised against a different, spatially separated fragment of Drosophila titin (D-titin). All three antibodies stained the Z-lines and other regions in insect myofibrils. In western blots of insect muscle extract the antibodies reacted with high molecular mass proteins, ranging between rat nebulin (600-900 kDa) and rat titin (3000-4000 kDa). Mass spectrometry of the high molecular mass band from the Coomassie-Blue-stained gel of insect muscle proteins indicates that the protein the antibodies bind to is titin. The pattern of staining in insect spermatocytes was slightly different in the two species, but in general all three anti-D-titin antibodies stained the same components: the chromosomes, prophase and telophase nuclear membranes, the spindle in general, along kinetochore and non-kinetochore microtubules, along apparent connections between partner half-bivalents during anaphase, and various cytoplasmic components, including the contractile ring. That the same cellular components are stained in close proximity by the three different antibodies, each against a different region of D-titin, is strong evidence that the three antibodies identify a titin-like protein in insect spindles, which we identified by mass spectrometry analysis as being titin. The spindle matrix proteins skeletor, megator and chromator are present in many of the same structures, in positions very close to (or the same as) D-titin. Myosin and actin also are present in spindles in close proximity to D-titin. The varying spatial arrangements of these proteins during the course of division suggest that they interact to form a spindle matrix with elastic properties provided by a titin-like protein

    The NEMP family supports metazoan fertility and nuclear envelope stiffness.

    Get PDF
    Human genome-wide association studies have linked single-nucleotide polymorphisms (SNPs) in NEMP1 (nuclear envelope membrane protein 1) with early menopause; however, it is unclear whether NEMP1 has any role in fertility. We show that whole-animal loss of NEMP1 homologs in Drosophila, Caenorhabditis elegans, zebrafish, and mice leads to sterility or early loss of fertility. Loss of Nemp leads to nuclear shaping defects, most prominently in the germ line. Biochemical, biophysical, and genetic studies reveal that NEMP proteins support the mechanical stiffness of the germline nuclear envelope via formation of a NEMP-EMERIN complex. These data indicate that the germline nuclear envelope has specialized mechanical properties and that NEMP proteins play essential and conserved roles in fertility

    Chromosome movements in locust spermatocytes

    Get PDF
    We tested whether the mechanisms of chromosome movement during anaphase in locust [Locusta migratoria (L.)] spermatocytes might be similar to those described in crane-fly spermatocytes. Actin and myosin have been implicated in anaphase chromosome movements in crane-fly spermatocytes as indicated by effects of inhibitors and by localisations of actin and myosin in spindles. In this study we tested whether locust spermatocytes spindles also utilize actin and myosin and whether actin is involved in microtubule flux. Living locust spermatocytes were treated with inhibitors of actin (Latrunculin B and Cytochalasin D), an inhibitor of myosin (BDM), or inhibitors of myosin phosphorylation (Y-27632 and ML-7). We added drugs (individually) during anaphase. Actin inhibitors alter anaphase: chromosomes either completely stop moving, slow, or sometimes accelerate. The myosin inhibitor, BDM, also alters anaphase: in most cases, the chromosomes drastically slow or stop. ML-7, an inhibitor of MLCK, causes chromosomes to stop, slow, or sometimes accelerate, similar to actin inhibitors. Y27632, an inhibitor of Rho-kinase, drastically slows or stops anaphase chromosome movements. The effects of the drugs on anaphase movement are reversible: most of the half-bivalents resume movement at normal speed after these drugs are washed out. Actin and myosin were present in the spindles in locations consistent with their possible involvement in force production. Microtubule flux along kinetochore fibres is an actin-dependent process, since LatB removes completely or drastically reduces the gap in microtubule acetylation at the kinetochore. These results suggest that actin and myosin are involved in anaphase chromosome movements in locust spermatocytes

    Does 2,3-butanedione monoxime inhibit nonmuscle myosin?

    No full text

    De novo phosphoinositide synthesis in zebrafish is required for triad formation but not essential for myogenesis.

    No full text
    Phosphoinositides (PIPs) and their regulatory enzymes are key players in many cellular processes and are required for aspects of vertebrate development. Dysregulated PIP metabolism has been implicated in several human diseases, including a subset of skeletal myopathies that feature structural defects in the triad. The role of PIPs in skeletal muscle formation, and particularly triad biogenesis, has yet to be determined. CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) catalyzes the formation of phosphatidylinositol, which is the base of all PIP species. Loss of CDIPT should, in theory, result in the failure to produce PIPs, and thus provide a strategy for establishing the requirement for PIPs during embryogenesis. In this study, we generated cdipt mutant zebrafish and determined the impact on skeletal myogenesis. Analysis of cdipt mutant muscle revealed no apparent global effect on early muscle development. However, small but significant defects were observed in triad size, with T-tubule area, inter terminal cisternae distance and gap width being smaller in cdipt mutants. This was associated with a decrease in motor performance. Overall, these data suggest that myogenesis in zebrafish does not require de novo PIP synthesis but does implicate a role for CDIPT in triad formation

    Titin in insect spermatocyte spindle fibers associates with microtubules, actin, myosin and the matrix proteins skeletor, megator and chromator

    No full text
    Titin, the giant elastic protein found in muscles, is present in spindles of crane-fly and locust spermatocytes as determined by immunofluorescence staining using three antibodies, each raised against a different, spatially separated fragment of Drosophila titin (D-titin). All three antibodies stained the Z-lines and other regions in insect myofibrils. In western blots of insect muscle extract the antibodies reacted with high molecular mass proteins, ranging between rat nebulin (600-900 kDa) and rat titin (3000-4000 kDa). Mass spectrometry of the high molecular mass band from the Coomassie-Blue-stained gel of insect muscle proteins indicates that the protein the antibodies bind to is titin. The pattern of staining in insect spermatocytes was slightly different in the two species, but in general all three anti-D-titin antibodies stained the same components: the chromosomes, prophase and telophase nuclear membranes, the spindle in general, along kinetochore and non-kinetochore microtubules, along apparent connections between partner half-bivalents during anaphase, and various cytoplasmic components, including the contractile ring. That the same cellular components are stained in close proximity by the three different antibodies, each against a different region of D-titin, is strong evidence that the three antibodies identify a titin-like protein in insect spindles, which we identified by mass spectrometry analysis as being titin. The spindle matrix proteins skeletor, megator and chromator are present in many of the same structures, in positions very close to (or the same as) D-titin. Myosin and actin also are present in spindles in close proximity to D-titin. The varying spatial arrangements of these proteins during the course of division suggest that they interact to form a spindle matrix with elastic properties provided by a titin-like protein.This article is published as Fabian, Lacramioara, Xuequin Xia, Deepa V. Venkitaramani, Kristen M. Johansen, Jørgen Johansen, Deborah J. Andrew, and Arthur Forer. "Titin in insect spermatocyte spindle fibers associates with microtubules, actin, myosin and the matrix proteins skeletor, megator and chromator." Journal of cell science 120, no. 13 (2007): 2190-2204. doi: 10.1242/jcs.03465. Posted with permission.</p
    corecore