481 research outputs found

    Neurosarcoidosis

    Get PDF
    Neurosarcoidosis is an uncommon but potentially serious manifestation of sarcoidosis. While the cranial nerves are most frequently affected, neurosarcoidosis can involve other nervous system tissues including the meninges, brain parenchyma (especially the hypothalamic region), spinal cord, peripheral nerve, and muscle. Diagnosis may be particularly challenging when neurosarcoidosis occurs in isolation. Diagnostic criteria usually include histologic identification of a noncaseating granuloma, supportive laboratory or imaging tests or both, and a compatible clinical course. Treatment has not been subjected to rigorous study, but corticosteroids are typically the first line of therapy and approximately half of patients have substantial benefit. For patients who are refractory to or intolerant of corticosteroid therapy, second-line agents include azathioprine, methotrexate, cyclosporine, cyclophosphamide, mycophenolate, and even cranial irradiation. The combination of infliximab and mycophenolate mofetil is under study as well. Treatment options will likely evolve as well-designed studies are undertaken

    Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes

    Get PDF
    AbstractThe actin cytoskeleton has been implicated in protein trafficking at the Golgi apparatus and in Golgi orientation and morphology. Actin dynamics at the Golgi are regulated in part by recruiting Cdc42 or Rac to the membrane through a binding interaction with the coatomer-coated (COPI)-vesicle coat protein, coatomer. This leads to actin polymerization through the effector, N-WASP and the Arp2/3 complex. Here, we have used reconstitution of vesicle budding to test whether Arp2/3 is recruited to membranes during the formation of COPI vesicles. Our results revealed that ARF1 activation leads to greatly increased Arp3 levels on the membranes. Coatomer-bound Cdc42 and pre-existing F-actin are important for Arp2/3 binding. ARF1-dependent Arp2/3 recruitment and actin polymerization can be reconstituted on liposomal membranes, indicating that no membrane proteins are necessary. These results show that activated ARF1 can stimulate Arp2/3 recruitment to Golgi membranes through coatomer, Cdc42 or Rac, and N-WASP

    Focal Monomorphic Ventricular Tachycardia As The First Manifestation Of Amyloid Cardiomyopathy

    Get PDF
    52-year-old patient presented with palpitation and well tolerated monomorphic ventricular tachycardia. He had normal echocardiogram and coronary angiogram 3 months prior to presentation. Surface EKG revealed regular wide-complex tachycardia with right bundle branch block morphology and right inferior axis. In conjunction with recent negative cardiac evaluation, this suggested idiopathic focal ventricular tachycardia from anterolateral basal left ventricle. CARTO based activation mapping confirmed the presence of VT focus in that area. Radiofrequency ablation at the site of perfect pacemap resulted in a partial suppression of the focus. Echocardiogram was subsequently performed because of progressive dyspnea. It revealed asymmetrical thickening of posterolateral left ventricle, with delayed enhancement on contrast magnetic resonance imaging. Fine needle aspiration of abdominal fat stained with Congo red confirmed the diagnosis of systemic AL amyloidosis due to IgG λ-light chain deposition. Consequently, the patient underwent placement of implantable defibrillator and hematopoetic stem cell transplantation. He remains in excellent functional status 18 months after presentation

    Use of diffusion spectrum imaging in preliminary longitudinal evaluation of amyotrophic lateral sclerosis: Development of an imaging biomarker

    Get PDF
    Previous diffusion tensor imaging (DTI) studies have shown white matter pathology in amyotrophic lateral sclerosis (ALS), predominantly in the motor pathways. Further these studies have shown that DTI can be used longitudinally to track pathology over time, making white matter pathology a candidate as an outcome measure in future trials. DTI has demonstrated application in group studies, however its derived indices, for example fractional anisotropy, are susceptible to partial volume effects, making its role questionable in examining individual progression. We hypothesize that changes in the white matter are present in ALS beyond the motor tracts, and that the affected pathways and associated pattern of disease progression can be tracked longitudinally using automated diffusion connectometry analysis. Connectometry analysis is based on diffusion spectrum imaging and overcomes the limitations of a conventional tractography approach and DTI. The identified affected white matter tracts can then be assessed in a targeted fashion using High definition fiber tractography (a novel white matter MR imaging technique). Changes in quantitative and qualitative markers over time could then be correlated with clinical progression. We illustrate these principles toward developing an imaging biomarker for demonstrating individual progression, by presenting results for five ALS patients, including with longitudinal data in two. Preliminary analysis demonstrated a number of changes bilaterally and asymmetrically in motoric and extramotoric white matter pathways. Further the limbic system was also affected possibly explaining the cognitive symptoms in ALS. In the two longitudinal subjects, the white matter changes were less extensive at baseline, although there was evidence of disease progression in a frontal pattern with a relatively spared postcentral gyrus, consistent with the known pathology in ALS. © 2014 Abhinav, Yeh, El-Dokla, Ferrando, Chang, Lacomis, Friedlander and Fernandez-Miranda

    Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles

    Get PDF
    Cytoskeletal dynamics at the Golgi apparatus are regulated in part through a binding interaction between the Golgi-vesicle coat protein, coatomer, and the regulatory GTP-binding protein Cdc42 (Wu, W.J., J.W. Erickson, R. Lin, and R.A. Cerione. 2000. Nature. 405:800–804; Fucini, R.V., J.L. Chen, C. Sharma, M.M. Kessels, and M. Stamnes. 2002. Mol. Biol. Cell. 13:621–631). The precise role of this complex has not been determined. We have analyzed the protein composition of Golgi-derived coat protomer I (COPI)–coated vesicles after activating or inhibiting signaling through coatomer-bound Cdc42. We show that Cdc42 has profound effects on the recruitment of dynein to COPI vesicles. Cdc42, when bound to coatomer, inhibits dynein binding to COPI vesicles whereas preventing the coatomer–Cdc42 interaction stimulates dynein binding. Dynein recruitment was found to involve actin dynamics and dynactin. Reclustering of nocodazole-dispersed Golgi stacks and microtubule/dynein-dependent ER-to-Golgi transport are both sensitive to disrupting Cdc42 mediated signaling. By contrast, dynein-independent transport to the Golgi complex is insensitive to mutant Cdc42. We propose a model for how proper temporal regulation of motor-based vesicle translocation could be coupled to the completion of vesicle formation

    RSC, an Essential, Abundant Chromatin-Remodeling Complex

    Get PDF
    AbstractA novel 15-subunit complex with the capacity to remodel the structure of chromatin, termed RSC, has been isolated from S. cerevisiae on the basis of homology to the SWI/SNF complex. At least three RSC subunits are related to SWI/SNF polypeptides: Sth1p, Rsc6p, and Rsc8p are significantly similar to Swi2/Snf2p, Swp73p, and Swi3p, respectively, and were identified by mass spectrometric and sequence analysis of peptide fragments. Like SWI/SNF, RSC exhibits a DNA-dependent ATPase activity stimulated by both free and nucleosomal DNA and a capacity to perturb nucleosome structure. RSC is, however, at least 10-fold more abundant than SWI/SNF complex and is essential for mitotic growth. Contrary to a report for SWI/SNF complex, no association of RSC (nor of SWI/SNF complex) with RNA polymerase II holoenzyme was detected

    TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 1

    Longitudinal biomarkers in amyotrophic lateral sclerosis

    Get PDF
    OBJECTIVE: To investigate neurodegenerative and inflammatory biomarkers in people with amyotrophic lateral sclerosis (PALS), evaluate their predictive value for ALS progression rates, and assess their utility as pharmacodynamic biomarkers for monitoring treatment effects. METHODS: De-identified, longitudinal plasma, and cerebrospinal fluid (CSF) samples from PALS (n = 108; 85 with samples from \u3e /=2 visits) and controls without neurological disease (n = 41) were obtained from the Northeast ALS Consortium (NEALS) Biofluid Repository. Seventeen of 108 PALS had familial ALS, of whom 10 had C9orf72 mutations. Additional healthy control CSF samples (n = 35) were obtained from multiple sources. We stratified PALS into fast- and slow-progression subgroups using the ALS Functional Rating Scale-Revised change rate. We compared cytokines/chemokines and neurofilament (NF) levels between PALS and controls, among progression subgroups, and in those with C9orf72 mutations. RESULTS: We found significant elevations of cytokines, including MCP-1, IL-18, and neurofilaments (NFs), indicators of neurodegeneration, in PALS versus controls. Among PALS, these cytokines and NFs were significantly higher in fast-progression and C9orf72 mutation subgroups versus slow progressors. Analyte levels were generally stable over time, a key feature for monitoring treatment effects. We demonstrated that CSF/plasma neurofilament light chain (NFL) levels may predict disease progression, and stratification by NFL levels can enrich for more homogeneous patient groups. INTERPRETATION: Longitudinal stability of cytokines and NFs in PALS support their use for monitoring responses to immunomodulatory and neuroprotective treatments. NFs also have prognostic value for fast-progression patients and may be used to select similar patient subsets in clinical trials
    • …
    corecore