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Abstract The actin cytoskeleton has been implicated in protein
trafficking at the Golgi apparatus and in Golgi orientation and
morphology. Actin dynamics at the Golgi are regulated in part
by recruiting Cdc42 or Rac to the membrane through a binding
interaction with the coatomer-coated (COPI)-vesicle coat pro-
tein, coatomer. This leads to actin polymerization through the
effector, N-WASP and the Arp2/3 complex. Here, we have used
reconstitution of vesicle budding to test whether Arp2/3 is
recruited to membranes during the formation of COPI vesicles.
Our results revealed that ARF1 activation leads to greatly
increased Arp3 levels on the membranes. Coatomer-bound
Cdc42 and pre-existing F-actin are important for Arp2/3
binding. ARF1-dependent Arp2/3 recruitment and actin poly-
merization can be reconstituted on liposomal membranes,
indicating that no membrane proteins are necessary. These
results show that activated ARF1 can stimulate Arp2/3 recruit-
ment to Golgi membranes through coatomer, Cdc42 or Rac, and
N-WASP.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The actin cytoskeleton plays an important role in protein

trafficking within the secretory pathway. Actin, numerous ac-

tin-binding proteins, and myosin motors are found to associate

with Golgi membranes and Golgi-derived vesicles [1–6].

Functional studies indicate that actin-binding proteins and

myosin motors function during protein transport between the

Golgi and the ER [3,6,7]. Importantly, addition of actin toxins

disrupts both anterograde and retrograde protein transport

within or from the Golgi apparatus [8,9].

Actin dynamics at many sites in the cell, including the Golgi,

involves the function of the Arp2/3 complex, a catalyst of actin

polymerization. The Arp2/3 complex, constituting the two

actin-related proteins (Arp2 and Arp3) and five other unre-

lated proteins (ARPC1-5), catalyzes actin polymerization

[10,11]. Arp2/3 catalyzes actin polymerization by providing a

nucleation site for growth in the barbed direction. It is in-
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trinsically inactive and responds to upstream signaling path-

ways, i.e., through the GTP-binding protein Cdc42 and the

WASP-family proteins, to allow spatial and temporal regula-

tion of actin dynamics. The complex also has an important

property of binding to pre-existing actin filaments causing the

formation of branched actin structures.

Arp2/3 has been characterized mostly for its function in

actin-based cell motility and comet-tail like movement of

pathogens. Arp2/3 was recently found to be required for re-

orientation of the Golgi apparatus toward the leading edge

when directed cell migration was induced by a scratch wound

[12]. Arp2/3 as well as Cdc42 and WASP mediated signaling

have been implicated in protein trafficking between the endo-

plasmic reticulum and the Golgi apparatus [3,13,14]. At the

Golgi apparatus, Arp2/3-dependent actin polymerization can

be regulated through a binding interaction between Cdc42 and

the vesicle coat protein, coatomer [3,14]. The coatomer/Cdc42

complex is recruited to the Golgi upon activation of ARF1.

Actin can affect the release of coatomer-coated (COPI) vesicles

in vitro [2]. Cdc42 mediates the recruitment of the Arp2/3

activating protein, N-WASP, to the Golgi membrane [13].

These studies strongly implicate regulated Arp2/3 function in

vesicle trafficking at the Golgi.

The role and regulation of Arp2/3-dependent actin poly-

merization at the Golgi complex remain to be fully charac-

terized. In this study, we present evidence that Arp2/3

localization to the Golgi apparatus involves the functions of

ARF1 and the coatomer-dependent recruitment of Cdc42 or

Rac to the membrane. These findings closely link Arp2/3-

dependent actin dynamics to the protein machinery that reg-

ulates protein trafficking.
2. Materials and methods

2.1. Materials
Rat-liver Golgi membranes and bovine-brain cytosol were isolated

as described previously [15]. Actin in bovine-brain cytosol was depleted
by binding to DNase I agarose [16]. Clostridium difficile toxin B (Tech
Lab Inc., Blacksburg VA), p23 peptide (Sigma), latrunculin A (Mo-
lecular Probes), brefeldin A (Calbiochem), and GTPcS (Boehringer–
Mannheim) were obtained commercially. Rabbit skeletal muscle actin
was the generous gift of Kuo-Kuang Wen and Peter Rubenstein
(University of Iowa). The glutathione S-transferase (GST)-fusion
protein containing the CA domain of rat N-WASP was expressed and
purified as described previously [3]. Recombinant myristoylated
ARF1(Q71L) was expressed and purified using DEAE–sephacel
ation of European Biochemical Societies.
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[17,18]. The following antibodies were used in these studies: anti-actin
(Sigma), anti-b-COP (Sigma), anti-Cdc42 (Upstate), anti-drebrin
(MBL), sheep anti-Arp3 (Cytoskeleton), anti-e-COP [19], anti-
NWASP (Cytoskeleton), and anti-mAbp1 [3].

2.2. Golgi-binding reaction and membrane float-up assay
Golgi-binding reactions contained 25 mM HEPES (pH 7.2), 2.5 mM

magnesium acetate, 15 mM potassium chloride, 0.2 M sucrose, Golgi
membranes (0.2 mg/ml), bovine-brain cytosol (1.0 mg/ml), and an ATP
regenerating system. The reactions were incubated for 20 min at 37 �C
as previously described [2]. The final reaction volumes were 1 ml. When
specified, GTPcS and/or the various inhibitors of actin signaling were
added at the indicated concentrations. For reactions containing bre-
feldin A, the membranes and cytosol were pre-incubated for 10 min at
37 �C with the toxin or with a solvent control. Following the incu-
bation, the membranes were isolated by centrifugation at 15 000� g for
20 min at 4 �C in a refrigerated microcentrifuge. The membranes were
then resuspended in 50 ll of 45% w/w sucrose in 25 mM HEPES, pH
7.2, and 25 mM potassium chloride and placed into a 7� 20 mm ul-
tracentrifugation tube. The sample was overlaid with 125 ll of 35% w/
w sucrose in 25 mM HEPES, pH 7.2, 25 mM potassium chloride and
then 25 ll of 15% w/w sucrose in 25 mM HEPES, pH 7.2, and 25 mM
potassium chloride. The sample was spun at 100 000 rpm for 45 min in
a TLA-100 rotor (Beckman Instruments). A 100 ll sample containing
the purified Golgi membranes was removed from the top of the step
gradient and the membrane-bound proteins were precipitated by the
addition of trichloroacetic acid to a final concentration of 10%. The
trichloroacetic-acid precipitate was analyzed by SDS–PAGE and
Western blotting.

2.3. Preparation of liposomes and liposome binding assay
Liposomes were prepared according to MacDonald et al. [20] with

the following modifications. Rat liver lipid extract (Avanti Polar
Lipids, Alabaster, AL) in chloroform was dried by evaporation and
then hydrated at 2.32 mg/ml in 20 mM HEPES (pH 7.2), 100 mM
potassium acetate, and 250 mM sucrose. The liposomes were sus-
pended using a mechanical shaker and subjected to 10 freeze–thaw
cycles. The vesicles were extruded through a polycarbonate membrane
with a pore diameter of 400 nm (Avestin, Ottawa, Canada) to produce
a unilammelar liposome population of uniform size [20]. For the li-
posome-binding assay, incubation conditions were identical to those
used for the Golgi-binding reaction described above except that Golgi
membranes were replaced with the liposomes (0.23 mg/ml). Following
the incubation, the membranes were isolated by centrifugation at
15 000� g for 30 min at 4 �C. The membranes were then washed two-
times with 25 mM HEPES (pH 7.2) and 25 mM potassium chloride.
The liposome-bound proteins were characterized by Coomassie-
stained gels and mass spectrometry, or analyzed by Western blotting.

2.4. Mass spectrometry
Gel-resolved proteins were digested with trypsin and the mixtures

fractionated on a Poros 50 R2 RP micro-tip [21]. Resulting peptide
pools were then analyzed by matrix-assisted laser-desorption/ioniza-
tion reflectron time-of-flight mass spectrometry using a Reflex III in-
strument from Bruker Daltonics (Bremen, Germany). Selected mass
values were taken to search the protein non-redundant database (NR;
National Center for Biotechnology Information, Bethesda, MD) using
the PeptideSearch [22] algorithm.
Fig. 1. (A) ARF is necessary but not sufficient for Arp2/3 recruitment
to Golgi membranes. Shown is a Western blot of float-up Golgi-
binding assays. GTPcS (20 lM) and 200 lM brefeldin A, BfA, were
added to the incubations as indicated. The blot was probed with an-
tibodies against b-COP, Arp3, actin and Cdc42. (B) Shown is a Wes-
tern blot of float-up Golgi-binding assays. GTPcS or 40 lg/ml
recombinant ARF1(Q71L) was added to the incubations as indicated.
The blot was probed with antibodies against b-COP, Arp3, actin,
Cdc42, and Rac1.
3. Results

3.1. Arp2/3 is an ARF-dependent Golgi-binding protein

Previous studies have shown that the ARF-dependent as-

sembly of COPI vesicles on Golgi membranes leads to

concomitant actin polymerization [2,23]. This actin assembly

involves the Arp2/3 complex and results in large part from

the recruitment of Cdc42 through a binding interaction with

coatomer. Actin dynamics at the Golgi could rely on acti-

vation of pre-bound protein machinery on the membranes or

alternatively through the regulated association and disasso-

ciation of Arp2/3 and other cytoskeletal signaling proteins to
the Golgi apparatus. In this regard, we examined whether

the Arp2/3 complex binds Golgi membranes in an ARF-

dependent manner.

We used a float-up Golgi-binding assay for these studies

that alleviates artifacts that result from non-Golgi-bound

cytoskeletal elements which co-sediment with the membranes

in assays that rely on sedimentation [2]. Our results confirm

that activation of GTP-binding proteins with GTPcS causes

Cdc42 and Rac to be recruited to the Golgi membranes in

addition to the COPI coat protein coatomer (Fig. 1A and

B). This results in the polymerization of actin on the

membranes (Fig. 1A). In vitro, Cdc42 and Rac often behave

similarly and both are recruited to Golgi membranes upon

ARF1 activation while, a third family member, RhoA, is not

[3]. Cdc42 localizes to Golgi membranes in whole cells and

is thus likely to be involved in Golgi function [24,25]. We

used an antibody against Arp3 to determine the levels of the

Arp2/3 complex on the Golgi membranes. In the absence of

GTPcS, no Arp3 was bound to the Golgi membranes fol-

lowing incubation with cytosol (Fig. 1). When Golgi mem-

branes were incubated with cytosol and GTPcS, Arp3 was

clearly detected on the membranes (Fig. 1A and B). The

membrane-bound Arp3 was derived from the cytosol, since

Arp3 levels were below detection limits on the input mem-

branes (data not shown). Blocking ARF activation with

brefeldin A inhibits the GTPcS-dependent binding of Arp3

to the Golgi (Fig. 1A, lane 3), indicating that ARF is nec-

essary for Arp2/3 recruitment to Golgi membranes. These

results suggest that Arp2/3 binding is stimulated upon the

ARF1-dependent recruitment of coatomer-bound Cdc42 (or

Rac) to the Golgi membrane.



J. Chen et al. / FEBS Letters 566 (2004) 281–286 283
3.2. Arp2/3 recruitment involves signaling through coatomer/

Cdc42

The constitutively active mutant ARF1(Q71L) recruits

coatomer to the Golgi membranes but unlike GTPcS, does
not induce Arp3, Cdc42 or Rac recruitment (Fig. 1B). This

demonstrates that active ARF is not sufficient for Arp2/3

recruitment and that Cdc42 (or Rac) must also be activated,

i.e., with GTPcS. We further tested whether Arp2/3 binding

to the Golgi requires coatomer-associated Rho GTPases by

using a peptide corresponding to the coatomer-binding do-

main of p23/p24 cargo proteins known to disrupt the in-

teraction between c-COP and Cdc42 [3,14]. We observed

that Arp3 levels on the Golgi membranes were greatly de-

creased by the addition of p23 peptide to the reaction

(Fig. 2B). By contrast, the levels of coatomer were unaf-

fected by the peptide. Addition of the Rho-family GTPase

inhibitor, C. difficile toxin B, provided additional evidence

that Arp2/3 binding to Golgi is mediated through Cdc42 or

Rac. Toxin B inhibited GTPcS/ARF1-dependent Arp2/3

binding to the Golgi membranes but had no effect on coa-

tomer (Fig. 2C). These results indicate that the coatomer/

Cdc42 interaction is necessary for the Arp2/3 recruitment to

the Golgi membranes.

Cdc42 most likely leads to Arp2/3 activation on the Golgi

apparatus by binding and activating N-WASP [3,13]. In this

regard, we examined N-WASP binding to the membranes.
Fig. 2. Arp2/3 binding to Golgi membranes requires its activation via sign
indicating the sites of action for the inhibitors of coatomer/Cdc42-mediated a
B and the p23 peptide. (B–E) Shown are the results from float-up Golgi-bin
Toxin B (C and D), or recombinant GST-N-WASP-CA (E). Western blots o
COP, Arp3, Cdc42, N-WASP, and Rac1 as indicated. In panels (B), (C), an
values from 3 (C) or 4 (B and E) experiments were plotted. The bars repres
Fig. 2D shows that N-WASP binds to Golgi in a GTPcS-de-
pendent, Toxin B-sensitive manner. We used a GST fusion

protein carrying the inhibitory C-terminal Arp2/3-binding

domain (CA) of N-WASP to test if activation of ARP2/3 is

necessary for Golgi binding [26–28]. Titration of the N-WASP-

CA domain into the binding reaction caused dose-dependent

inhibition of the GTPcS/ARF1-dependent Arp2/3 binding to

the Golgi membranes, but had little effect on coatomer binding

(Fig. 2E). GST alone affected neither coatomer nor Arp2/3

binding to Golgi (data not shown). These results indicate that

activation of the Arp2/3 complex by WASP family members is

necessary for its binding to the Golgi membranes.

3.3. Arp2/3 binding requires actin

Previous studies indicate that full activation of the Arp2/3

complex by WASP/Scar proteins involves the formation of an

Arp2/3 complex with G-actin and a pre-existing ‘‘mother fil-

ament’’ [29–31]. This, together with our observation that only

activated Arp2/3 bound to the Golgi membranes (Fig. 2E), led

us to determine whether actin is necessary for recruitment of

the Arp2/3 complex. We tested this by adding an actin-

monomer-binding toxin, latrunculin A, to the binding assay.

Fig. 3A shows that the Arp2/3 binding was inhibited by la-

trunculin A in a dose-dependent manner. The binding was

completely blocked by latrunculin A at concentrations above

1 lM. Similar results for Arp2/3 binding and actin assembly on
aling through the coatomer/Cdc42 complex. (A) Shown is a diagram
ctivation of WASP and Arp2/3 used in this study: N-WASP-CA, toxin
ding assays carried out with 20 lM GTPcS, 250 lM p23 peptide (B),
f the isolated Golgi membranes were probed with antibodies against b-
d (E), Western blots were quantified by densitometry and the average
ent the standard error of the mean.



Fig. 4. (A) ARF-regulated actin polymerization can be reconstituted
on liposomes. Shown is a Western blot of liposome-binding assays
carried out in the presence of bovine-brain cytosol. Brefeldin A (BfA,
200 lM), latrunculin A (LatA, 1 lM), cytochalasin D (CytoD, 20 lg/
ml) and GTPcS (20 lM) were added as indicated. The blot was probed
with antibodies against b-COP, drebrin, mAbp1, and actin. (B) Arp2/3
binds to liposomes in an ARF-dependent manner. Shown is a Coo-
massie-blue-stained 12% SDS–PAGE of isolated liposomes following
incubations with bovine-brain cytosol. GTPcS and brefeldin A, BfA,
were added to the incubations as indicated. The protein bands corre-
sponding to Arp3, ARPC1 and ARPC2 were identified using mass
spectrometric analysis of their tryptic fragments (see Section 2). The
actin band was identified by comparison with Western blots.

Fig. 3. Arp2/3 recruitment to Golgi membranes requires actin. (A)
Golgi-binding assays were carried out in the presence of cytosol and
GTPcS plus varying concentrations of latrunculin A. The levels of
bound coatomer (b-COP), actin, and Arp2/3 (Arp3) were determined
by Western blotting and quantified by densitometry. Shown are the
averages from three independent experiments. The bars represent the
standard error of the mean. (B) Shown is a Western blot of float-up
Golgi-binding assays carried out either with normal bovine-brain cy-
tosol (lanes 1 and 2) or with actin-depleted cytosol (lanes 3–6). The
Western blot was probed with antibodies against b-COP, Arp3, and
actin as indicated. GTPcS and purified muscle a-actin were added to
the incubations where indicated.
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the Golgi membranes were obtained in the presence of cyto-

chalasin D (data not shown). Coatomer binding was unaf-

fected by the toxin treatment (Fig. 3A).

To directly analyze the role of actin in Arp2/3 interactions

with the Golgi membranes, we prepared actin-depleted cy-

tosol for use in the Golgi-binding assay. ARF1-dependent

Arp2/3 binding and actin assembly on Golgi membranes

were inhibited when using actin-depleted cytosol, although

ARF1-mediated coatomer assembly on the Golgi membranes

was unaffected (Fig. 3B, compare lanes 2 and 4). This in-

hibition was reversed by the addition of pure skeletal-muscle

actin monomers to the reaction (lane 6). Together, these

results indicate that binding of the Arp2/3 complex to the

Golgi membranes in response to upstream signals requires

actin.
3.4. Cytosolic proteins are sufficient for ARF-mediated actin

polymerization

COPI vesicle assembly can be reconstituted on liposomal

membranes that are devoid of membrane proteins [32,33]. We

wished to test whether cytosol-derived proteins were also suf-

ficient for ARF/coatomer/Cdc42-dependent actin polymeriza-

tion. Liposome binding assays confirm that coatomer binds

in a GTPcS-dependent manner (Fig. 4A compare lane 1 with

lane 2). This binding is sensitive to brefeldin A (lane 5), but

resistant to the actin-depolymerizing toxins cytochalasin D

(lane 3) and latrunculin A (lane 4). Importantly, we observed

that actin and the two actin-binding proteins, drebrin and

mAbp1, bind liposomes in a GTPcS-dependent, BFA-sensitive

manner (compare lanes 1, 2 and 5). ARF-dependent drebrin

association with the liposomes is sensitive to cytochalasin D

and latrunculin A (lanes 3 and 4), whereas mAbp1 binding to

the liposomes is insensitive to cytochalasin D (lane 3). These

findings closely mirror our previous results identifying drebrin

and mAbp1 as largely segregated into two different ARF1-

dependent actin complexes on the Golgi membranes [3]. From

these data, we determined that liposomes faithfully recapitu-

late several aspects of ARF1-regulated actin polymerization

and could take the place of Golgi membranes in the cell-free
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reconstitution for identifying candidate proteins that regulate

actin dynamics in the early secretory pathway.

Coomassie-blue stained SDS gels from the liposome binding

assay revealed that in addition to actin, abundant protein

bands of 51, 41 and 34 kDa bound to liposomes only when

GTPcS was included in the reactions (Fig. 4B). Recruitment of

these proteins to the liposomes was inhibited by the addition of

brefeldin A, indicating that the binding is mediated by ARF

(compare Fig. 4B, lanes 2 and 3). These three ARF-dependent

protein bands were identified as the subunits of the Arp2/3

complex, Arp3 (51 kDa), ARPC1 (41 kDa), and ARPC2 (34

kDa), using mass spectrometry. This result reveals that the

Arp2/3 complex is a major ARF1-dependent membrane

binding protein. Since Arp2/3 binding and actin polymeriza-

tion can be reconstituted on liposomes, that are initially devoid

of membrane proteins, we conclude that all of the protein

machinery necessary for ARF/coatomer-dependent actin po-

lymerization can be recruited from the cytosol during vesicle

formation.
4. Discussion

There is increasing evidence indicating the importance of the

cytoskeleton for protein trafficking in cells [34]. Specific actin-

binding proteins, such as mAbp1 and myosin motor proteins,

as well as proteins that regulate actin dynamics, such as Cdc42,

N-WASP and Arp2/3, have been implicated in the function of

the Golgi apparatus [3,6,12,13]. These proteins are important

for the positioning and orientation of the Golgi apparatus as

well as for protein trafficking. Since the actin cytoskeleton is

involved in numerous cellular processes such as cell motility,

organelle distribution, and cell structure formation (i.e., mi-

crovilli), it can be challenging to dissect the role and the reg-

ulation of actin in the secretory pathway, especially with

whole-cell approaches.

For example, we have attempted to examine the effects of

mutant ARF1 and Cdc42 on Arp2/3 localization in whole

cells. Although we find defects in Arp2/3 localization under

these conditions (data not shown), there are also changes in

Golgi morphology or global actin dynamics in the cell that

make these results difficult to interpret. In this regard, we have

now utilized a cell-free reconstitution approach, both on

liposomes and on isolated Golgi membranes, that allow

ARF-dependent regulation of actin dynamics to be studied in

isolation.

We report that Arp2/3 binds to Golgi membranes in re-

sponse to ARF1 activation. This binding requires the coa-

tomer/Cdc42 complex and very likely the activation of Golgi

localized N-WASP. We also find that actin is required for the

binding of Arp2/3 to the Golgi membranes. We propose that

ARF1 leads to the polymerization of actin by activating

Cdc42, N-WASP and Arp2/3. Although coatomer/Cdc42-de-

pendent activation of Arp2/3 accounts for much of the actin

that binds to Golgi membranes, our results also indicate that

there are additional mechanisms that regulate Golgi actin. In

this regard, we reported previously that there are two distinct

ARF-dependent actin pools. Only one of these pools, one

defined by the binding of the actin-binding protein, mAbp1, is

dependent on signaling through coatomer/Cdc42. It will be of

interest to clarify which pools of actin are dependent on Arp2/3
and what additional activation mechanisms, for example

Scar2, are involved at the Golgi apparatus.

Cdc42 requires the binding interaction with coatomer for its

recruitment to the Golgi membranes. Since N-WASP [13] and

Arp2/3 also bind to the Golgi apparatus in response to ARF

activation, it seems plausible that they also interact with the

membranes in a complex with coatomer/Cdc42. Indeed, our

results with the p23 peptide in the presence of GTPcS (Fig. 2A)

indicate that Cdc42 activation in solution is not sufficient for

Arp2/3 localization to the Golgi membranes. Nevertheless, our

results show that most, if not all, of the Arp2/3 binding to the

membrane requires the presence of actin. Thus, Arp2/3 ap-

pears to be activated by coatomer-bound Cdc42 on the

membrane and then binds to the membrane via actin filaments.

We have observed that Rac and Cdc42 behave similarly with

regard to membrane binding in vitro. There is a preponderance

of data supporting the involvement of Cdc42 at the Golgi

complex. Nevertheless, a role for Rac cannot be discounted.

Additional characterization of Cdc42, Rac and other homo-

logs such as TC10 [35] will be required for a full understanding

of the function of Rho-related GTP-binding proteins in the

early secretory pathway.

Importantly, our finding that GTPcS-dependent and bre-

feldin A-sensitive actin polymerization can be reconstituted on

liposomes demonstrates that there is not an absolute require-

ment for integral membrane proteins or preassociated pe-

ripheral membrane proteins for actin assembly during vesicle

formation. Thus, the coatomer/Cdc42 complex likely recruits

all necessary downstream components for this process in-

cluding N-WASP and Arp2/3 to the Golgi membrane. As the

mechanisms for regulating cytoskeletal dynamics in the secre-

tory pathway become clearer, the road will be paved for a

better understanding of the function of the cytoskeleton in

vesicular trafficking.
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