5 research outputs found

    Bifunctional Janus Spheres with Chemically Orthogonal Patches

    No full text
    Bifunctional Janus particles with patches carrying orthogonal surface functionalities that can be independently modified are widely seen as promising building blocks for the bottom-up assembly of functional materials due to their full compositional and geometrical programmability. However, synthesis of these colloids remains an elusive task as current scalable procedures are generally limited to monofunctional particles only. Herein, a scalable bulk wet-chemical synthetic method for fabricating bifunctional Janus particles following a two-step dispersion polymerization is developed. Patch formation on these colloids is driven by the spontaneous phase separation between a brominated outer shell and poly(propargyl acrylate) (p(PA)), formed after the seed particles were swollen with the corresponding monomer. The size ratio between the two patches is readily tunable by controlling the volumetric ratio between the feeding monomers. The distinct patches of these Janus particles carry chemical handles facilitating independent and orthogonal surface modification using Atom Transfer Radical Polymerization (ATRP) and thiol-yne Click chemistry for the brominated and alkyne-containing patches, respectively. The presented route toward bifunctional patchy spheres provides a versatile starting point for the development of bifunctional colloidal particles with tailored directional properties

    Wet-chemical synthesis of chiral colloids

    No full text
    \u3cp\u3eWe disclose a method for the synthesis of chiral colloids from spontaneously formed hollow sugar-surfactant microtubes with internally confined mobile colloidal spheres. Key feature of our approach is the grafting of colloid surfaces with photoresponsive coumarin moieties, which allow for UV-induced, covalent clicking of colloids into permanent chains, with morphologies set by the colloid-to-tube diameter ratio. Subsequent dissolution of tube confinement yields aqueous suspensions that comprise bulk quantities of a variety of linear chains, including single helical chains of polystyrene colloids. These colloidal equivalents of chiral (DNA) molecules are intended for microscopic study of chiral dynamics on a single-particle level.\u3c/p\u3

    Wet-chemical synthesis of chiral colloids

    No full text
    We disclose a method for the synthesis of chiral colloids from spontaneously formed hollow sugar-surfactant microtubes with internally confined mobile colloidal spheres. Key feature of our approach is the grafting of colloid surfaces with photoresponsive coumarin moieties, which allow for UV-induced, covalent clicking of colloids into permanent chains, with morphologies set by the colloid-to-tube diameter ratio. Subsequent dissolution of tube confinement yields aqueous suspensions that comprise bulk quantities of a variety of linear chains, including single helical chains of polystyrene colloids. These colloidal equivalents of chiral (DNA) molecules are intended for microscopic study of chiral dynamics on a single-particle level

    Wet-chemical synthesis of chiral colloids

    Get PDF
    We disclose a method for the synthesis of chiral colloids from spontaneously formed hollow sugar-surfactant microtubes with internally confined mobile colloidal spheres. Key feature of our approach is the grafting of colloid surfaces with photoresponsive coumarin moieties, which allow for UV-induced, covalent clicking of colloids into permanent chains, with morphologies set by the colloid-to-tube diameter ratio. Subsequent dissolution of tube confinement yields aqueous suspensions that comprise bulk quantities of a variety of linear chains, including single helical chains of polystyrene colloids. These colloidal equivalents of chiral (DNA) molecules are intended for microscopic study of chiral dynamics on a single-particle level

    Bifunctional Janus Spheres with Chemically Orthogonal Patches

    No full text
    Bifunctional Janus particles with patches carrying orthogonal surface functionalities that can be independently modified are widely seen as promising building blocks for the bottom-up assembly of functional materials due to their full compositional and geometrical programmability. However, synthesis of these colloids remains an elusive task as current scalable procedures are generally limited to monofunctional particles only. Herein, a scalable bulk wet-chemical synthetic method for fabricating bifunctional Janus particles following a two-step dispersion polymerization is developed. Patch formation on these colloids is driven by the spontaneous phase separation between a brominated outer shell and poly(propargyl acrylate) (p(PA)), formed after the seed particles were swollen with the corresponding monomer. The size ratio between the two patches is readily tunable by controlling the volumetric ratio between the feeding monomers. The distinct patches of these Janus particles carry chemical handles facilitating independent and orthogonal surface modification using Atom Transfer Radical Polymerization (ATRP) and thiol-yne Click chemistry for the brominated and alkyne-containing patches, respectively. The presented route toward bifunctional patchy spheres provides a versatile starting point for the development of bifunctional colloidal particles with tailored directional properties
    corecore