248 research outputs found

    Initiation of a stable convective hydroclimatic regime in Central America circa 9000 years BP

    Get PDF
    Many Holocene hydroclimate records show rainfall changes that vary with local orbital insolation. However, some tropical regions display rainfall evolution that differs from gradual precessional pacing, suggesting that direct rainfall forcing effects were predominantly driven by sea-surface temperature thresholds or inter-ocean temperature gradients. Here we present a 12,000 yr continuous U/Th-dated precipitation record from a Guatemalan speleothem showing that Central American rainfall increased within a 2000 yr period from a persistently dry state to an active convective regime at 9000 yr BP and has remained strong thereafter. Our data suggest that the Holocene evolution of Central American rainfall was driven by exceeding a temperature threshold in the nearby tropical oceans. The sensitivity of this region to slow changes in radiative forcing is thus strongly mediated by internal dynamics acting on much faster time scales

    G0^0 Electronics and Data Acquisition (Forward-Angle Measurements)

    Get PDF
    The G0^0 parity-violation experiment at Jefferson Lab (Newport News, VA) is designed to determine the contribution of strange/anti-strange quark pairs to the intrinsic properties of the proton. In the forward-angle part of the experiment, the asymmetry in the cross section was measured for e⃗p\vec{e}p elastic scattering by counting the recoil protons corresponding to the two beam-helicity states. Due to the high accuracy required on the asymmetry, the G0^0 experiment was based on a custom experimental setup with its own associated electronics and data acquisition (DAQ) system. Highly specialized time-encoding electronics provided time-of-flight spectra for each detector for each helicity state. More conventional electronics was used for monitoring (mainly FastBus). The time-encoding electronics and the DAQ system have been designed to handle events at a mean rate of 2 MHz per detector with low deadtime and to minimize helicity-correlated systematic errors. In this paper, we outline the general architecture and the main features of the electronics and the DAQ system dedicated to G0^0 forward-angle measurements.Comment: 35 pages. 17 figures. This article is to be submitted to NIM section A. It has been written with Latex using \documentclass{elsart}. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment In Press (2007

    Search for the Photoexcitation of Exotic Mesons in the π+π+π- System

    Get PDF
    A search for exotic mesons in the π+π+π− system photoproduced by the charge exchange reaction γp→π+π+π−(n) was carried out by the CLAS Collaboration at Jefferson Lab. A tagged-photon beam with energies in the 4.8 to 5.4 GeV range, produced through bremsstrahlung from a 5.744 GeV electron beam, was incident on a liquid-hydrogen target. A partial wave analysis was performed on a sample of 83 000 events, the highest such statistics to date in this reaction at these energies. The main objective of this study was to look for the photoproduction of an exotic JPC=1−+ resonant state in the 1 to 2 GeV mass range. Our partial wave analysis shows production of the a2(1320) and the π2(1670) mesons, but no evidence for the a1(1260) , nor the π1(1600) exotic state at the expected levels. An upper limit of 13.5 nb is determined for the exotic π1(1600) cross section, less than 2% of the a2(1320) production

    Precise Measurement of the Neutron Magnetic Form Factor GnM in the Few-GeV² Region

    Get PDF
    The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q2 = 1.0–4.8  GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the dat

    Water Source Partitioning for Shrubland Transpiration Using Innovative Field Methods

    Full text link
    37 PowerPoint slides Convener: Franco Biondi, UNR & Michael Young, DRI Session 4: Ecological Change and Water Resources Abstract: -Climate change models predict a decline in precipitation over the next few decades throughout much of the southwest. -Such change has the potential to shift water uptake dynamics of phreatophytes -If groundwater pumping also occurs, the impact of climate change could be exacerbated. -A better understanding of the forces that drive the coupling and decoupling of phreatophytes to groundwater is needed

    Moments of the spin structure functions g(1)(p) and g(1)(d) for 0.05 \u3c Q\u3csup\u3e2\u3c/sup\u3e \u3c 3.0 GeV\u3csup\u3e2\u3c/sup\u3e

    Get PDF
    The spin structure functions g1 for the proton and the deuteron have been measured over a wide kinematic range in x and Q2 using 1.6 and 5.7 GeV longitudinally polarized electrons incident upon polarized NH3 and ND3 targets at Jefferson Lab. Scattered electrons were detected in the CEBAF Large Acceptance Spectrometer, for 0.05 \u3c Q2 \u3c 5GeV2 and W \u3c 3 GeV. The first moments of g1 for the proton and deuteron are presented – both have a negative slope at low Q2, as predicted by the extended Gerasimov–Drell–Hearn sum rule. The first extraction of the generalized forward spin polarizability of the proton γ p 0 the Q2 evolution of the first moment of g1 shows agreement in leading order with Heavy Baryon Chiral Perturbation Theory. However, a significant discrepancy is observed between the γ p 0 data and Chiral Perturbation calculations for γ p 0, even at the lowest Q2

    Beam Spin Asymmetries in Deeply Virtual Compton Scattering (DVCS) With CLAS at 4.8 GeV

    Get PDF
    We report measurements of the beam spin asymmetry in deeply virtual Compton scattering (DVCS) at an electron beam energy of 4.8 GeV using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The DVCS beam spin asymmetry has been measured in a wide range of kinematics, 1.02\u3c2.8 (GeV/c)2, 0.12\u3cxB\u3c0.48, and 0.1\u3c−t\u3c0.8 (GeV/c)2, using the reaction →ep→e′pX. The number of H(e,e′γp) and H(e,e′π0p) events are separated in each (Q2,xB,t) bin by a fit to the line shape of the H(e,e′p)X M2x distribution. The validity of the method was studied in detail using experimental and simulated data. It was shown that with the achieved missing mass squared resolution and the available statistics, the separation of DVCS–Bethe-Heitler and π0 events can reliably be done with less than 5% uncertainty. Also, the Q2 and t dependences of the sinϕ moments of the asymmetry are extracted and compared with theoretical calculations

    Measurement of Deeply Virtual Compton Scattering With a Polarized-Proton Target

    Get PDF
    The longitudinal target-spin asymmetry AUL for the exclusive electroproduction of high-energy photons was measured for the first time in e→p→e′pγ. The data have been accumulated at JLab with the CLAS spectrometer using 5.7 GeV electrons and a longitudinally polarized NH3 target. A significant azimuthal angular dependence was observed, resulting from the interference of the deeply virtual Compton scattering and Bethe-Heitler processes. The amplitude of the sinϕ moment is 0.252±0.042stat±0.020sys. Theoretical calculations are in good agreement with the magnitude and the kinematic dependence of the target-spin asymmetry, which is sensitive to the generalized parton distributions ˜H and H

    Nucleon electromagnetic form factors

    Get PDF
    Elastic electromagnetic nucleon form factors have long provided vital information about the structure and composition of these most basic elements of nuclear physics. The form factors are a measurable and physical manifestation of the nature of the nucleons' constituents and the dynamics that binds them together. Accurate form factor data obtained in recent years using modern experimental facilities has spurred a significant reevaluation of the nucleon and pictures of its structure; e.g., the role of quark orbital angular momentum, the scale at which perturbative QCD effects should become evident, the strangeness content, and meson-cloud effects. We provide a succinct survey of the experimental studies and theoretical interpretation of nucleon electromagnetic form factors.Comment: Topical review invited by Journal of Physics G: Nuclear and Particle Physics; 34 pages (contents listed on page 34), 11 figure
    • …
    corecore