7,853 research outputs found
Identification of the YfgF MASE1 domain as a modulator of bacterial responses to aspartate
Complex 3'-5'-cyclic diguanylic acid (c-di-GMP) responsive regulatory networks that are modulated by the action of multiple diguanylate cyclases (DGC; GGDEF domain proteins) and phosphodiesterases (PDE; EAL domain proteins) have evolved in many bacteria. YfgF proteins possess a membrane-anchoring domain (MASE1), a catalytically inactive GGDEF domain and a catalytically active EAL domain. Here, sustained expression of the Salmonella enterica spp. Enterica ser. Enteritidis YfgF protein is shown to mediate inhibition of the formation of the aspartate chemotactic ring on motility agar under aerobic conditions. This phenomenon was c-di-GMP-independent because it occurred in a Salmonella strain that lacked the ability to synthesize c-di-GMP and also when PDE activity was abolished by site-directed mutagenesis of the EAL domain. YfgF-mediated inhibition of aspartate chemotactic ring formation was impaired in the altered redox environment generated by exogenous p-benzoquinone. This ability of YfgF to inhibit the response to aspartate required a motif, (213)Lys-Lys-Glu(215), in the predicted cytoplasmic loop between trans-membrane regions 5 and 6 of the MASE1 domain. Thus, for the first time the function of a MASE1 domain as a redox-responsive regulator of bacterial responses to aspartate has been shown
Constraints on models for the initial collision geometry in ultra relativistic heavy ion collisions
Monte Carlo (MC) simulations are used to compute the centrality dependence of
the collision zone eccentricities (), for both spherical and
deformed ground state nuclei, for different model scenarios. Sizable model
dependent differences are observed. They indicate that measurements of the
and order Fourier flow coefficients ,
expressed as the ratio , can provide robust constraints
for distinguishing between different theoretical models for the initial-state
eccentricity. Such constraints could remove one of the largest impediments to a
more precise determination of the specific viscosity from precision
measurements at the Relativistic Heavy Ion Collider (RHIC).Comment: 4 pages, 3 figs - version accepted for publicatio
Dark-Halo Cusp: Asymptotic Convergence
We propose a model for how the buildup of dark halos by merging satellites
produces a characteristic inner cusp, of a density profile \rho \prop r^-a with
a -> a_as > 1, as seen in cosmological N-body simulations of hierarchical
clustering scenarios. Dekel, Devor & Hetzroni (2003) argue that a flat core of
a<1 exerts tidal compression which prevents local deposit of satellite
material; the satellite sinks intact into the halo center thus causing a rapid
steepening to a>1. Using merger N-body simulations, we learn that this cusp is
stable under a sequence of mergers, and derive a practical tidal mass-transfer
recipe in regions where the local slope of the halo profile is a>1. According
to this recipe, the ratio of mean densities of halo and initial satellite
within the tidal radius equals a given function psi(a), which is significantly
smaller than unity (compared to being 1 according to crude resonance criteria)
and is a decreasing function of a. This decrease makes the tidal mass transfer
relatively more efficient at larger a, which means steepening when a is small
and flattening when a is large, thus causing converges to a stable solution.
Given this mass-transfer recipe, linear perturbation analysis, supported by toy
simulations, shows that a sequence of cosmological mergers with homologous
satellites slowly leads to a fixed-point cusp with an asymptotic slope a_as>1.
The slope depends only weakly on the fluctuation power spectrum, in agreement
with cosmological simulations. During a long interim period the profile has an
NFW-like shape, with a cusp of 1<a<a_as. Thus, a cusp is enforced if enough
compact satellite remnants make it intact into the inner halo. In order to
maintain a flat core, satellites must be disrupted outside the core, possibly
as a result of a modest puffing up due to baryonic feedback.Comment: 37 pages, Latex, aastex.cls, revised, ApJ, 588, in pres
The mass function
We present the mass functions for different mass estimators for a range of
cosmological models. We pay particular attention to how universal the mass
function is, and how it depends on the cosmology, halo identification and mass
estimator chosen. We investigate quantitatively how well we can relate observed
masses to theoretical mass functions.Comment: 14 pages, 12 figures, to appear in ApJ
A new method for the experimental study of topological effects in the quark-gluon plasma
A new method is presented for the quantitative measurement of charge
separation about the reaction plane. A correlation function is obtained whose
shape is concave when there is a net separation of positive and negative
charges. Correlations not specifically associated with charge, from flow, jets
and momentum conservation, do not influence the shape or magnitude of the
correlation function. Detailed simulations are used to demonstrate the
effectiveness of the method for the quantitative measurement of charge
separation. Such measurements are a pre-requisite to the investigation of
topological charge effects in the QGP as derived from the "strong
problem".Comment: Six pages 13 figures. Submitted for publicatio
Measuring the Cosmic Equation of State with Counts of Galaxies
The classical dN/dz test allows the determination of fundamental cosmological
parameters from the evolution of the cosmic volume element. This test is
applied by measuring the redshift distribution of a tracer whose evolution in
number density is known. In the past, ordinary galaxies have been used as such
a tracer; however, in the absence of a complete theory of galaxy formation,
that method is fraught with difficulties. In this paper, we propose studying
instead the evolution of the apparent abundance of dark matter halos as a
function of their circular velocity, observable via the linewidths or rotation
speeds of visible galaxies. Upcoming redshift surveys will allow the linewidth
distribution of galaxies to be determined at both z~1 and the present day. In
the course of studying this test, we have devised a rapid, improved
semi-analytic method for calculating the circular velocity distribution of dark
halos based upon the analytic mass function of Sheth et al. (1999) and the
formation time distribution of Lacey & Cole (1993). We find that if selection
effects are well-controlled and minimal external constraints are applied, the
planned DEEP Redshift Survey should allow the measurement of the cosmic
equation-of-state parameter w to 10% (as little as 3% if Omega_m has been
well-determined from other observations). This type of test has the potential
also to provide a constraint on any evolution of w such as that predicted by
``tracker'' models.Comment: 4 pages plus 3 embedded figures; version approved by Ap. J. Letters.
A greatly improved error analysis has been added, along with a figure showing
complementarity to other cosmological test
- …