27 research outputs found
Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function
BACKGROUND: Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain. There are several important HPE mutational target genes, including the transcription factor SIX3, which encodes an early regulator of Shh, Wnt, Bmp and Nodal signalling expressed in the developing forebrain and eyes of all vertebrates. OBJECTIVE: To characterise genetic and clinical findings in patients with SIX3 mutations. METHODS: Patients with HPE and their family members were tested for mutations in HPE-associated genes and the genetic and clinical findings, including those for additional cases found in the literature, were analysed. The results were correlated with a mutation-specific functional assay in zebrafish. RESULTS: In a cohort of patients (n = 800) with HPE, SIX3 mutations were found in 4.7% of probands and additional cases were found through testing of relatives. In total, 138 cases of HPE were identified, 59 of whom had not previously been clinically presented. Mutations in SIX3 result in more severe HPE than in other cases of non-chromosomal, non-syndromic HPE. An over-representation of severe HPE was found in patients whose mutations confer greater loss of function, as measured by the functional zebrafish assay. The gender ratio in this combined set of patients was 1.5:1 (F:M) and maternal inheritance was almost twice as common as paternal. About 14% of SIX3 mutations in probands occur de novo. There is a wide intrafamilial clinical range of features and classical penetrance is estimated to be at least 62%. CONCLUSIONS: Our data suggest that SIX3 mutations result in relatively severe HPE and that there is a genotype-phenotype correlation, as shown by functional studies using animal models
Multicolour FISH and quantitative PCR can detect submicroscopic deletions in holoprosencephaly patients with a normal karyotype
Holoprosencephaly (HPE) is the most common structural malformation of the developing forebrain. At birth, nearly 50% of children with HPE have cytogenetic anomalies. Approximately 20% of infants with normal chromosomes have sequence mutations in one of the four main HPE genes (SHH, ZIC2, SIX3, and TGIF). The other nonâsyndromic forms of HPE may be due to environmental factors or mutations in other genes, or potentially due to submicroscopic deletions of HPE genes. We used two complementary assays to test for HPE associated submicroscopic deletions. Firstly, we developed a multicolour fluorescent in situ hybridisation (FISH) assay using probes for the four major HPE genes and for two candidate genes (DISP1 and FOXA2). We analysed lymphoblastoid cell lines (LCL) from 103 patients who had CNS findings of HPE, normal karyotypes, and no point mutations, and found seven microdeletions. We subsequently applied quantitative PCR to 424 HPE DNA samples, including the 103 samples studied by FISH: 339 with CNS findings of HPE, and 85 with normal CNS and characteristic HPE facial findings. Microdeletions for either SHH, ZIC2, SIX3, or TGIF were found in 16 of the 339 severe HPE cases (that is, with CNS findings; 4.7%). In contrast, no microdeletion was found in the 85 patients at the mildest end of the HPE spectrum. Based on our data, microdeletion testing should be considered as part of an evaluation of holoprosencephaly, especially in severe HPE cases
Familial dementia caused by polymerization of mutant neuroserpin
Aberrant protein processing with tissue deposition is associated with many common neurodegenerative disorders1, 2; however, the complex interplay of genetic and environmental factors has made it difficult to decipher the sequence of events linking protein aggregation with clinical disease3. Substantial progress has been made toward understanding the pathophysiology of prototypical conformational diseases and protein polymerization in the superfamily of serine proteinase inhibitors (serpins)4, 5. Here we describe a new disease, familial encephalopathy with neuroserpin inclusion bodies, characterized clinically as an autosomal dominantly inherited dementia, histologically by unique neuronal inclusion bodies and biochemically by polymers of the neuron-specific serpin, neuroserpin6, 7. We report the cosegregation of point mutations in the neuroserpin gene (PI12) with the disease in two families. The significance of one mutation, S49P, is evident from its homology to a previously described serpin mutation8, whereas that of the other, S52R, is predicted by modelling of the serpin template. Our findings provide a molecular mechanism for a familial dementia and imply that inhibitors of protein polymerization may be effective therapies for this disorder and perhaps for other more common neurodegenerative diseases